
Specification-Driven Synthesis of Summaries for Symbolic
Execution

Rafael Henriques dos Santos Gonçalves

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. José Faustino Fragoso Femenin dos Santos
Prof. Pedro Miguel dos Santos Alves Madeira Adão

Examination Committee

Chairperson: Prof. Valentina Nisi
Supervisor: Prof. José Faustino Fragoso Femenin dos Santos

Member of the Committee: Prof. David Naumann

November 2023

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

First and foremost, I would like to thank my supervisors, Prof. Pedro Adão and Prof. José Santos,

for their unwavering support in writing this thesis. Their advice and insight has proven invaluable in

getting this project to where it is today, and has also greatly contributed to my personal development as

a researcher.

Secondly, I want to extend my gratitude to all my colleagues at IST who, in one way or another,

helped me through these last few months of hard work. In particular, I want to give a heartfelt thank you

to Frederico Ramos for his invaluable help with the evaluation of our work, and in general for his time,

patience and friendship.

Last but not least, I would like to thank my family and friends for the emotional support they showed

me this past year. There are too many names that I would like to highlight, but know that I could not have

done this without you.

i

Abstract

Symbolic execution is a program analysis technique that allows for the exploration of the execution paths

of a given program up to a bound. Despite its popularity, two main challenges still hinder its use with

real-world code: interactions with the runtime environment and path explosion. Symbolic summaries,

which model the symbolic execution of concrete functions by directly interacting with the symbolic state,

are one possible solution to address these problems. Summaries, however, are both error-prone and

difficult to validate, making the task of writing them a tedious one. We present SUMSYNTH, a new

tool for automatically synthesising symbolic summaries from separation-logic-style declarative specifica-

tions. SUMSYNTH supports the generation of two types of summaries: under-approximating summaries,

which model a subset of the paths generated by the symbolic execution of the concrete function, and

over-approximating summaries, which model a superset of the paths generated by the symbolic exe-

cution of the concrete function. Furthermore, SUMSYNTH can generate summaries for two separate

back ends: C summaries that can be run on any tool that implements our symbolic reflection API, and

Python summaries specifically generated for the angr symbolic execution tool. To evaluate SUMSYNTH,

we generate 29 under-approximating summaries and 34 over-approximating summaries modelling 34

LIBC functions and use the generated summaries to symbolically test two highly used real-world C li-

braries obtained from GitHub. Results show that SUMSYNTH summaries are much easier to write than

handcrafted summaries, and surpass them both in terms of correctness and performance.

Keywords

Symbolic Execution; Symbolic Summaries; Synthesis; Separation Logic; Specifications.

iii

Resumo

Execução simbólica é uma técnica de análise de programas que permite a exploração dos caminhos

de execução de um dado programa até um certo limite. Apesar da sua popularidade, dois desafios

principais ainda dificultam o seu uso em programas reais: interações com o ambiente e explosão de

caminhos. Sumários simbólicos, que modelam a execução simbólica de funções concretas através

da interação direta com o estado simbólico, são uma possı́vel solução para lidar com estes problemas.

Sumários, no entanto, são propensos a erros e difı́ceis de validar, tornando a tarefa de escrevê-los ente-

diante. Apresentamos o SUMSYNTH, uma nova ferramenta para sintetizar automaticamente sumários

simbólicos a partir de especificações baseadas em lógica de separação. A ferramenta SUMSYNTH

permite gerar dois tipos de sumários: de subaproximação, que modelam um subconjunto dos cam-

inhos gerados pela execução simbólica da função concreta, e de sobreaproximação, que modelam

um superconjunto dos caminhos gerados pela execução simbólica da função concreta. A ferramenta

gera sumários para dois back ends distintos: sumários em C que podem ser corridos em qualquer

ferramenta que implemente a nossa API de reflexão simbólica, e sumários em Python gerados especifi-

camente para a ferramenta angr. Para avaliar o SUMSYNTH, geramos 29 sumários de subaproximação

e 34 sumários de sobreaproximação modelando 34 funções da LIBC e usamos os sumários gerados

para testar simbolicamente duas bibliotecas de C populares obtidas do GitHub. Os resultados mostram

que os sumários da ferramenta SUMSYNTH são mais fáceis de escrever do que sumários manuais, e

ultrapassam-los em termos de correção e desempenho.

Palavras Chave

Execução Simbólica; Sumários Simbólicos; Sı́ntese; Lógica de Separação; Especificações.

v

Contents

1 Introduction 1

2 Background 7

2.1 Symbolic Execution . 9

2.1.1 Pure Symbolic Execution . 9

2.1.2 Symbolic Execution with Summaries . 12

2.2 Separation Logic . 17

2.2.1 Foundations: Hoare Logic . 17

2.2.2 The Separating Conjunction . 18

2.2.3 Specifications . 19

3 Related Work 21

3.1 Summaries in Symbolic Execution . 23

3.1.1 Operational Summaries . 23

3.1.2 First-Order Summaries . 23

3.1.3 Structured Summaries . 24

3.2 SL-Based Synthesis . 25

3.2.1 Test Synthesis . 25

3.2.2 Program Synthesis . 25

3.2.3 Wrapper Synthesis . 25

3.2.4 Closing Remarks . 26

4 Specification-Driven Function Synthesis 27

4.1 Overview . 29

4.2 Syntax . 30

4.3 Input/Output Parameters . 31

4.4 Matching Plans . 32

4.5 Matching Trees . 35

4.6 Code Generation . 41

4.6.1 Syntax . 41

vii

4.6.2 Compilation . 41

5 Specification-Driven Summary Synthesis 47

5.1 Limitations of Function Synthesis . 49

5.2 Under-Approximating Compilation . 50

5.3 Over-Approximating Compilation . 53

6 Architecture and Implementation 57

7 Evaluation 63

7.1 EQ1: Synthesis Correctness . 65

7.2 EQ2: Summary Complexity . 67

7.2.1 Challenges . 67

7.2.2 Results . 68

7.3 EQ3: Summary Performance . 71

7.3.1 Experimental Setup . 71

7.3.2 Results . 71

8 Conclusion 75

8.1 Conclusions . 77

8.2 Future Work . 77

Bibliography 79

viii

List of Figures

2.1 Symbolic execution of LIBC’s strlen . 11

2.2 Symbolic execution of foo without summaries . 12

2.3 Symbolic execution of foo with summaries . 17

2.4 Visualizing x 7→ y ∗ y 7→ x . 19

4.1 Visualizing the program state . 29

4.2 Full synthesised function f . 30

4.3 Matching Plan Generation . 33

4.4 Deriving a valid matching plan for [x 7→ #y, #z 7→ #w, x+ 1 7→ #z] 34

4.5 Matching Tree Generation . 37

4.6 Deriving a valid matching tree for {[x ≥ 0, y := x], [x < 0, y := −x]} 38

4.7 Compilation Functions: Casrt (left) and Ctree (right) . 42

5.1 Compilation Functions: Cuxtree (left) and Aux
tree (right) . 52

5.2 Compilation Function: Coxtree . 54

6.1 SUMSYNTH architecture . 60

ix

x

List of Tables

3.1 Support for operational summaries in popular symbolic execution tools 24

7.1 Correctness properties of the synthesised summaries . 66

7.2 Complexity of the synthesised summaries (C) . 69

7.3 Complexity of the synthesised summaries (Python) . 70

7.4 Performance of the synthesised summaries . 72

xi

xii

List of Algorithms

4.1 COMPILEPRED compiles a predicate definition . 44

4.2 COMPILESPEC compiles a function specification . 45

5.1 OX-CODE compiles the set of simple assertions shared by the two branches of a double

node . 55

xiii

xiv

List of Listings

2.1 Our running example: foo, a client function of strlen . 9

2.2 An over-approximating summary for strlen . 14

2.3 An under-approximating summary for strlen . 15

2.4 An exact summary for strlen . 16

6.1 An over-approximating specification for atoi . 61

6.2 JSON encoding of the synthesised summary for atoi (excerpt) 62

6.3 Synthesised Python summary for atoi (excerpt) . 62

xv

xvi

Acronyms

AST Abstract Syntax Tree

IL Intermediate Language

I/O Input/Output

IR Intermediate Representation

LoC Lines of Code

OX Over-Approximating

SAT Boolean Satisfiability

SMT Satisfiability Modulo Theories

SL Separation Logic

SSL Synthetic Separation Logic

UX Under-Approximating

xvii

xviii

1
Introduction

1

2

Symbolic execution [1,2], first proposed in the 1970s by a number of software verification researchers,

was envisioned in King’s 1976 seminal paper [3] as a program analysis technique that would bridge the

gap between the fields of program testing and program verification by allowing the execution of pro-

grams with symbolic values instead of concrete ones. The core idea is to have a symbolic execution

engine explore the execution paths of a given program, maintaining for each: (i) a store mapping vari-

ables into symbolic values or expressions, called a symbolic memory store, and (ii) a first order formula,

called path condition, describing the constraints on symbolic values that led execution towards that path.

Eventually, a solver verifies the feasibility of the path and checks for inputs that might lead to undesired

outcomes. In the past, symbolic execution has often been seen as costly and its usefulness limited to

academic applications. Recent advances in Satisfiability Modulo Theories (SMT) [4] and compositional

analysis approaches [5] have however revived the field, with an active research community now trying

to answer its many open questions.

Despite the possibilities of symbolic execution, two main challenges still hinder its use with real-

world code: interactions with the runtime environment and path explosion [6]. One of the most popular

solutions deployed by modern engines to address these limitations is to use symbolic summaries, which

allow for the modelling of both external functions and internal functions with a high degree of branching.

Symbolic summaries are reusable code snippets that model the behaviour of concrete functions without

actually having to symbolically execute them. They allow developers to directly interact with the symbolic

state, which makes them a useful mechanism to contain the number of explored paths [6,7].

Despite its popularity, the use of symbolic summaries to address the limitations of symbolic execution

also presents us with some challenges. In particular, modern summaries suffer from the fact that they

are written manually, usually in a tool-specific manner and without being verified [7]. This is far from

ideal: the task of manually writing symbolic summaries is still a tedious one, being both error-prone

and time-consuming. For this reason, even the most popular symbolic execution engines have limited

support for summaries; angr [8], for instance, modeled 128 LIBC functions as of 20231.

Another issue with state-of-the-art symbolic summaries is the prevalence of bugs that compromise

the correctness and/or coverage guarantees of symbolic execution engines. Notably, a study conducted

by Ramos et al. [7] looked at 37 summaries from popular symbolic execution tools (specifically angr [8],

Binsec [9] and Manticore [10]) and found bugs in more than half. The problem is made considerably

worse by the relative lack of attention that the research community has shown towards symbolic sum-

maries, resulting in a dire state of affairs where tool support is both scarce and prone to bugs.

Although some attention has recently been given to the problem of summary validation [7], the main

challenges of manual summary development, namely its proneness to errors, have remained largely

unaddressed. Nonetheless, it is clear that the current approach of writing summaries manually is neither

1For reference, the GNU LIBC implementation (glibc) offers 1720 functions.

3

practical, nor does it scale to a large number of functions, such as those offered by LIBC. In particular, the

lack of correctness guarantees is a challenge that is largely a consequence of the manual development

of summaries. Thus, there is an obvious need for automated support for symbolic summary construction,

which would allow for the streamlined development of correct-by-construction summaries.

The main goal of this thesis is to automate the creation of non-mutating symbolic summaries by

synthesising them from declarative specifications. More concretely, we design a system that receives

a separation-logic-style specification of the target function (in the form of pre- and post-conditions) and

synthesises the corresponding summary from this input. Separation Logic (SL) [11, 12] is an extension

of Hoare logic developed by Reynolds et al. at the turn of the century that allows for reasoning about

programs that access and mutate pointer data structures. Although its use has historically been as-

sociated with program verification, separation logic has also proven its usefulness in a variety of other

areas. Notably, it underpins the inner workings of Infer [13], a static analyser used by Facebook to de-

bug millions of lines of code every day, while Polikarpova and Sergey [14] showed that it can be used to

synthesise concrete heap-manipulating functions. Unlike existing literature [14], however, we intend to

synthesise symbolic summaries, not concrete functions.

In this thesis, we detail a methodology to implement these ideas, and introduce SUMSYNTH, a tool

that applies them in practice. SUMSYNTH works as follows. First, we feed it a specification for the target

function written in a custom SL-style assertion language. Then, SUMSYNTH produces the corresponding

summary in an intermediate language (IL) and outputs it as a JSON file, which can later be used to drive

the generation of actual executable summaries through a special-purpose transpiler. While our ultimate

goal is to eventually create a tool for synthesising symbolic summaries for unrestricted functions, in this

thesis we choose to focus only on non-mutating functions due to time constraints. We expect the same

methodology to apply to other functions, with the additional challenge of having to come up with a way

to model memory side effects at the summary level.

Importantly, our approach allows for generated summaries to be either under- or over-approximating.

A summary is said to be under-approximating if the set of paths it models is contained in the set of paths

generated by the symbolic execution of the concrete function, and over-approximating if the set of paths

it models contains the set of paths generated by the symbolic execution of the concrete function. There

is no one correct choice for which type of summary is better, as it often depends on the specific needs of

the application. Hence, with SUMSYNTH, the developer can choose which of the two approaches better

suits their needs.

An interesting consequence of our design is that one can change the output language of the sum-

maries by changing only the transpiler, since there is an intermediate step where summaries are pro-

duced in a custom IL. This means that the actual overhead of generating summaries for different tools is

relatively small. Thus, we choose to produce summaries in both C and Python. The first can be directly

4

executed by any tool that implements the API developed by Ramos et al. [7], while the latter can be

executed by angr [8], which consistently ranks among the most popular symbolic execution engines.

In order to evaluate the viability of our approach, we generate a set of 29 under-approximating sum-

maries and 34 over-approximating summaries (modelling 34 LIBC functions) compatible both with Ramos

et al.’s tool-independent API [7] and angr [8]. We then compare the performance of automatically syn-

thesised summaries with their handcrafted equivalents on two distinct data sets that make heavy use

of LIBC functions. Our analysis finds that synthesised summaries do prove to be a viable alternative to

manually written ones, with considerable gains both in terms of complexity and performance.

Additionally, we evaluate the correctness properties of the generated summaries with the help of

the summary validation tool SUMBOUNDVERIFY [7], which verifies correctness up to a bound. We find

synthesised summaries to be sufficiently expressive to ensure the desired correctness properties both in

the case of under-approximating summaries and over-approximating summaries. Although guaranteeing

that synthesised summaries are correct-by-construction would require a formal proof, this result strongly

suggests that such is the case.

Contributions. The main focus of this thesis is the development of a methodology for automating the

generation of symbolic summaries. In summary, we make the following contributions:

• A novel formally defined methodology for synthesising symbolic summaries and executable code

from SL-style specifications.

• A tool for automatically synthesising summaries for a variety of symbolic execution engines.

• A library of 29 under-approximating summaries and 34 over-approximating summaries modelling

34 LIBC functions, compatible both with Ramos et al.’s tool-independent API [7] and angr [8].

Outline. The rest of this thesis is structured as follows. Chapter 2 presents the background theory of our

project, focusing on symbolic execution with and without summaries, and on the theory and pragmatics

of separation logic. Chapter 3 provides an overview of related work in the area. Chapter 4 describes

how we can use specifications to drive function synthesis, while Chapter 5 does the same for symbolic

summaries. Chapter 6 describes the architecture and implementation of SUMSYNTH. Chapter 7 covers

the evaluation of the synthesised summaries. Finally, Chapter 8 concludes with some closing thoughts

on our contributions and pointers for possible future work.

5

6

2
Background

Contents

2.1 Symbolic Execution . 9

2.2 Separation Logic . 17

7

8

We take a trip through our project’s core concepts, from the basics of symbolic execution and sum-

maries in §2.1 to the theory and pragmatics of separation logic in §2.2.

2.1 Symbolic Execution

We start by going over the basics of symbolic execution, exploring both its benefits and limitations when

applied to real-world code, and then proceed to explore how symbolic summaries can prove to be a

powerful tool for dealing with some of the main challenges affecting the field.

1 void foo(char *str1, char *str2) {

2 int len1 = strlen(str1);

3 int len2 = strlen(str2);

4

5 assert(len1 == len2);

6 }

Listing 2.1: Our running example: foo, a client function of strlen

A running example. Consider the function foo defined in Listing 2.1. This simple function receives two

strings, str1 and str2, computes their lengths by making a call to the LIBC function strlen, and asserts

that the obtained lengths are equal. Throughout this section, we use it as our running example to first

illustrate how symbolic execution is performed without summaries (in §2.1.1), and then with summaries

(in §2.1.2).

2.1.1 Pure Symbolic Execution

Symbolic execution [1–3] is a program analysis technique that allows for the exploration of all possible

execution paths in a program (up to a bound) by replacing unknown concrete values with symbolic ones.

Symbolic execution is handled by a symbolic execution engine maintaining for each path: (i) a store

mapping variables into symbolic values or expressions, called a symbolic memory store, and (ii) a first

order formula, called path condition, describing constraints on symbolic values. These are updated by

different types of instructions, as we will see further ahead when we explore them in more detail. When

the engine hits a branching instruction, a solver verifies the feasibility of the path and checks for inputs

that might lead to undesired outcomes (e.g., failed assertions).

Let us then look at each component more closely. A symbolic memory store, typically denoted

by σ, is a function that maps program variables into symbolic expressions. An example would be

σ = {i 7→ n̂, j 7→ n̂ + 1}1, meaning that a variable i holds the symbolic expression n̂ and j holds

n̂ + 1. The symbolic store is updated when an assignment is executed. Thus, if for instance we

1We use the caret (∧) to denote symbolic variables.

9

encountered the instruction i += j in our previous example, the resulting memory store would be

σ = {i 7→ 2 ∗ n̂+ 1, j 7→ n̂+ 1}.

The path condition, denoted by π, is a first order formula consisting of constraints on symbolic values

that describe the conditions that led execution along a certain path. Initially, the path condition is simply

the Boolean value true, which is then updated accordingly each time the execution branches (i.e., due

to conditionals or loops). A conditional branch update is simple enough: assuming σ = {i 7→ n̂} and

π : true, encountering the instruction if (i > 0) generates two branches with path conditions π : n̂ > 0

and π : n̂ ≤ 0 respectively. Dealing with loops is more difficult, and constitutes an active field of study

in symbolic execution. Proposed solutions include loop unfolding [15] and bounded execution of loops

iterating over symbolic values [16]. For the purpose of simplicity, our pure symbolic executor uses a

basic flavor of loop unrolling where loops are turned into a series of if-else statements, as we will see

further ahead.

The final component of the symbolic execution engine is the solver, also referred to as the model

checker in some of the literature [6]. The solver is responsible for checking that a path is feasible, i.e.,

that there is an assignment of concrete values to symbolic variables that satisfies the constraints, and

whether any such assignment violates the desired properties of the program. Modern model checkers

are typically based on Satisfiability Modulo Theories (SMT) solvers [4] such as Z3 [17] and CVC5 [18],

which allow for reasoning about more complex formulas (operations involving arrays, for instance) than

traditional Boolean Satisfiability (SAT) solvers.

Still, there are a number of problems plaguing pure symbolic execution. For instance, what happens

when we explore unreachable paths (i.e., with unsatisfiable path conditions)? How do solvers deal

with more complicated constraints, such as those involving non-linear operations? Such questions are

outside of the scope of this project, but Baldoni et al. [6] provide a thorough overview of these and other

challenges for the interested reader.

Symbolically executing foo. Let us now visit our running example, the client function foo given in

Figure 2.1. Consider an execution of foo with str1 = [ĉ1, ĉ2, '\0'] and str2 = [ĉ3, ĉ4, '\0'],

where ĉ1, ĉ2, ĉ3 and ĉ4 are symbolic variables (chars, in our case) and \0 is the null terminator. We

would expect the assert on line 5 to do nothing, since the strings appear to both have a length of 2;

symbolically executing foo, however, proves otherwise.

In Figure 2.1(a) we can see a (simplified) concrete implementation of LIBC’s strlen. Given a string

str, we iterate over it until a \0 is found, and then return its length by subtracting the memory address

of the first character from the address of the null terminator. In Figure 2.1(b) we present a symbolic

execution tree for the execution of strlen with str = [ĉ1, ĉ2, '\0']. According to the previously

introduced notation, σ denotes the symbolic memory store, while π denotes the path condition; we omit

σ in states where it does not change for brevity’s sake. The execution starts with str[0..2] in the

10

(a) Simplified strlen implementation (b) Symbolic execution tree

Figure 2.1: Symbolic execution of LIBC’s strlen

symbolic store; at line 2, a new variable is added, s, pointing to the address of str, and finally the loop

is executed, yielding a return value of 0 if ĉ1 = '\0', 1 if ĉ1 ̸= '\0' ∧ ĉ2 = '\0' and 2 if ĉ1 ̸= '\0' ∧ ĉ2 ̸= '\0'.

Observe that we depict three return nodes in Figure 2.1(b), each corresponding to one of the three

possible return values.

With this knowledge in hand, we can now derive the symbolic execution tree for foo(str1, str2)

in Figure 2.2. As before, σ denotes the symbolic memory store, while π denotes the path condition.

Observe that execution starts with a memory store containing str1 and str2 (written in a simplified form

where str 7→ [ĉ1, ĉ2, '\0'] is taken to mean str[0] 7→ ĉ1, str[1] 7→ ĉ2, str[2] 7→ '\0') and a path condition

set to true. After making the first call to strlen, however, we now have three paths, one for each

possible return value. Then, with the second call to strlen, each of these paths again branches into

three others. We can now see that our prediction was wrong: if ĉ1 = '\0', only ĉ3 = '\0' passes the

assert; both ĉ3 ̸= '\0' ∧ ĉ4 = '\0' and ĉ3 ̸= '\0' ∧ ĉ4 ̸= '\0' fail. The subtrees for ĉ1 ̸= '\0' ∧ ĉ2 = '\0'

and ĉ1 ̸= '\0' ∧ ĉ2 ̸= '\0' are omitted for brevity, but it is trivial to deduce that the assert similarly fails if

the lengths yielded by the calls to strlen are different. In the end, out of nine paths, only three of them

proved successful.

Our symbolic execution of foo highlighted another issue. From analysing the code and the obtained

tree, one can see that the number of paths grows exponentially in relation to the number of calls to

strlen. In our case this is not a problem, since nine paths is a manageable amount. Imagine, however,

11

Figure 2.2: Symbolic execution of foo without summaries

what would happen if we increased the number of calls with similarly-sized strings. At five calls, for

instance, the derived tree would have 35 = 243 paths, while at ten that number would have already

grown to 310 = 59049 paths!

2.1.2 Symbolic Execution with Summaries

Symbolic summaries are reusable code snippets that model the symbolic execution of concrete functions

(both internal and external) by directly interacting with the symbolic state [6, 7]. The main idea is to

allow the constraining of symbolic variables affected by the modeled function without actually having to

symbolically execute it. This provides a higher degree of control over the symbolic state, which allows

one to avoid problems often faced in pure symbolic execution, such as interactions with the runtime

environment and the issue of path explosion [6], but comes at the cost of requiring the developer to

implement summaries manually.

Symbolic summaries are, however, often difficult to produce, leading to a variety of tool-specific

solutions. angr [8], for instance, implements SimProcedures, a collection of commonly used function

summaries written in Python, while also allowing users to write their own summaries. Manticore [10]

models a number of Linux system calls, but only a few are actually true summaries, with most being stubs

that concretize the symbolic arguments. AVD [19] supports a number of external calls by implementing

36 LIBC functions, including commonly used system calls.

12

A more recent idea, proposed by Ramos et al. [7], is to move towards the creation of tool-independent

summaries. The author specifically proposes a symbolic reflection API for implementing tool-independent

symbolic summaries for the C programming language. The explicit manipulation of C symbolic states

is achieved through the use of symbolic reflection primitives [20]. These include primitives for creating

symbolic variables and constraints, checking for satisfiability, and extending the path condition, which is

a set large enough to allow for the implementation of most summaries. The API supports a variety of

symbolic execution tools targeting C code and allows for the formal definition of correctness properties

for summaries.

There are various ways to group symbolic summaries in respect to one or more correctness proper-

ties. In this thesis, we classify summaries as being over-approximating [21], under-approximating [22]

or exact [23]. A summary is:

• Over-approximating if the set of paths modeled by the symbolic summary contains the set of paths

generated by the symbolic execution of the concrete function, i.e., if the constraints generated by

the first are implied by the constraints generated by the latter.

• Under-approximating if the set of paths modeled by the symbolic summary is contained in the

set of paths generated by the symbolic execution of the concrete function, i.e., if the constraints

generated by the first imply the constraints generated by the latter.

• Exact if it is both over- and under-approximating, i.e., if the formulas generated by the symbolic

execution of the concrete implementation and the summary are equivalent.

Exact summaries may seem ideal, but in practice they prove to be the hardest to design. Over-

approximating summaries are best suited for applications in which one has to guarantee the absence of

security flaws. Under-approximating summaries work well with debugging applications, in order to only

show bugs that truly exist.

In line with our running example, we explore different flavors of strlen summaries over the next few

pages. We specifically present over-approximating, under-approximating and exact summaries devel-

oped for the API proposed by Ramos et al. [7].

An example of an over-approximating summary. Listing 2.2 shows the implementation of an over-

approximating summary for strlen. Given a string s, strlen over iterates over it until it finds a concrete

null terminator. If, in the meantime, it finds a symbolic character, it builds a not-equal constraint taking

s[i] and '\0' as arguments (i.e., SAT only if s[i] ̸= '\0' is satisfiable). If the constraint is unsatisfiable,

meaning that s[i] = '\0', the summary returns the current length; otherwise, it returns a new symbolic

variable val and assumes that val is greater than or equal to the current index i (i.e., SAT only if

val ≥ i, with val and i being signed values, is satisfiable), adding r ≡ val ≥ i to the path condition. In

13

1 size_t strlen_over(char* s) {

2 int i = 0;

3 char zero = '\0';

4

5 while (1) {

6 if (is_symbolic(&s[i],CHAR_SIZE)) {

7 if (!is_sat(_solver_NEQ(&s[i], &zero, CHAR_SIZE)))

8 break;

9 else {

10 symbolic val = new_sym_var(INT_SIZE);

11 cnstr_t r = _solver_SGE(&val, &i, INT_SIZE);

12 assume(r);

13

14 return val;

15 }

16 }

17 else if(s[i] == '\0') break;

18 i++;

19 }

20

21 return i;

22 }

Listing 2.2: An over-approximating summary for strlen

practice, executing it with our example string str = [ĉ1, ĉ2, '\0'] yields val as its return value and

adds val ≥ 0 to the path condition. This highlights why the summary is over-approximating: all the paths

generated by the symbolic execution of the concrete function (i.e., lengths of 0, 1 or 2) are contained

in the paths modeled by strlen over (i.e., any lengths greater than or equal to 0). The summary is

not, however, exact, since there are paths modeled by the summary that are not concrete paths of

strlen(str) (e.g., lengths greater than 2).

An example of an under-approximating summary. Listing 2.3 shows the implementation of an under-

approximating summary for strlen. Similarly to its over-approximating counterpart, given a string s,

strlen under iterates over it until it finds a concrete null terminator. If, in the meantime, it finds a

symbolic character, it builds a not-equal constraint taking s[i] and '\0' as arguments (i.e., SAT only

if s[i] ̸= '\0' is satisfiable). If the constraint is unsatisfiable, meaning that s[i] = '\0', the summary

returns the current length; otherwise, it adds cnstr ≡ s[i] ̸= '\0' to the path condition and continues

iterating. Executing it with our example string str = [ĉ1, ĉ2, '\0'] yields 2 as its return value and

adds ĉ1 ̸= '\0' ∧ ĉ2 ̸= '\0' to the path condition. This highlights why the summary is under-approximating:

the path modeled by strlen under (i.e., a length of 2) is contained in the set of the paths generated

by the symbolic execution of the concrete function (i.e., lengths of 0, 1 or 2). The summary is not,

however, exact, since there are concrete paths of strlen(str) that are not modeled by the summary

(e.g., lengths smaller than 2).

14

1 size_t strlen_under(char* s) {

2 int i = 0;

3 char char_zero = '\0';

4

5 while (1) {

6 if (is_symbolic(&s[i], CHAR_SIZE)) {

7 cnstr_t cnstr = _solver_NEQ

8 (&s[i], &charZero, CHAR_SIZE);

9

10 if (!is_sat(cnstr)) break;

11 else assume(cnstr);

12 }

13 else if (s[i] == charZero) break;

14 i++;

15 }

16

17 return i;

18 }

Listing 2.3: An under-approximating summary for strlen

An example of an exact summary. Finally, Listing 2.4 shows the implementation of an exact summary

for strlen. Similarly to the previous examples, strlen exact receives a string s as argument; this time,

however, it first searches for the index of the first occurrence of a concrete null terminator (which is a

trivial upper bound on the length of s). Then, it creates a symbolic variable ret for the return value and

iterates over the symbolic characters backwards, recursively creating an if-then-else constraint where

if ≡ s[i] = '\0', then ≡ ret = i and else ≡ ite prev (with ite prev being the constraint built in the

previous iteration). In the provided code snippet, this refers to line 19’s ret cnstr, where ret cnstr ≡

ite(c eq zero, ret eq i, ret cnstr), with c eq zero ≡ if , ret eq i ≡ then and ret cnstr ≡ else. After

the loop finishes, the summary returns the symbolic variable ret and adds the constraint ret cnstr ≡

ite(s[0] = '\0', ret = 0, ite(s[1] = '\0', ...)) to the path condition. Observe that now the execution

of strlen exact over our example string str = [ĉ1, ĉ2, '\0'] yields ret as its return value, adding

ite(ĉ1 = '\0', ret = 0, ite(ĉ2 = '\0', ret = 1, ret = 2)) to the path condition. This demonstrates the

exactness of the summary: all the paths it models (i.e., lengths of 0, 1 or 2) are paths generated by the

symbolic execution of the concrete function (i.e., lengths of 0, 1 or 2), and vice-versa; the summary is

thus simultaneously under- and over-approximating and, therefore, exact.

Revisiting our running example. We are now in a position to revisit the symbolic execution of foo. This

time, however, we consider an execution where the calls to the concrete implementation of strlen in

lines 2 and 3 are replaced by calls to the symbolic summary strlen exact. As before, we invoke foo with

str1 = [ĉ1, ĉ2, '\0'] and str2 = [ĉ3, ĉ4, '\0'] as arguments and take σ, π and str 7→ [ĉ1, ĉ2, '\0']

to assume meanings according to the usual notation. With that in mind, we can now derive the symbolic

execution tree presented in Figure 2.3. Observe that, similarly to the previous execution, we start with a

15

1 size_t strlen_exact(char* s) {

2 int i = 0;

3 char char_zero = '\0';

4

5 while (is_symbolic(&s[i],CHAR_SIZE) || s[i] != '\0') {

6 i++;

7 }

8

9 int len = i;

10 symbolic ret = new_sym_var(INT_SIZE);

11 cnstr_t ret_cnstr = _solver_EQ(&ret, &len, INT_SIZE);

12

13 for (i = len - 1; i >= 0; i--) {

14 if (is_symbolic(&s[i],CHAR_SIZE)) {

15 cnstr_t c_eq_zero = _solver_EQ

16 (&s[i], &char_zero, CHAR_SIZE);

17 cnstr_t ret_eq_i = _solver_EQ

18 (&ret, &i, INT_SIZE);

19

20 ret_cnstr = _solver_IF

21 (c_eq_zero, ret_eq_i, ret_cnstr);

22 }

23 }

24

25 assume(ret_cnstr);

26 return ret;

27 }

Listing 2.4: An exact summary for strlen

symbolic memory store containing str1 and str2 and a path condition set to true. After the first call to

strlen, though, the path no longer branches; instead, the call to the summary produces a new symbolic

variable r̂1, after which we add len1 7→ r̂1 to the memory store and r̂1 = ite(ĉ1 = '\0', 0, ite(ĉ2 = '\0',

1, 2)) to the path condition. This process is then repeated for str2, resulting in a similar outcome for

len2. In the end, it is only in line 5 that a degree of branching is introduced by the constraint solver, when

it determines that the assert is only successful if r̂1 = r̂2 ⇔ (ĉ1 = '\0'∧ ĉ3 = '\0')∨(ĉ1 ̸= '\0'∧ ĉ2 = '\0'∧

ĉ3 ̸= '\0' ∧ ĉ4 = '\0') ∨ (ĉ1 ̸= '\0' ∧ ĉ2 ̸= '\0' ∧ ĉ3 ̸= '\0' ∧ ĉ4 ̸= '\0').

One important thing to note is how the use of summaries addressed the path explosion problem.

Recall that our first symbolic execution of foo branched into nine possible paths, and that these grew

exponentially, with more calls to strlen easily resulting in a number of paths reaching into the thousands.

By simply switching the calls to the concrete strlen with calls to an equivalent symbolic summary,

however, we have managed to streamline the symbolic execution of foo to one single path, regardless

of the number of times strlen is called. This reduces the strain of LIBC calls on the symbolic execution

engine, instead shifting it to the constraint solver, and thus allows for more efficient executions of code

with repeated calls to such functions.

16

Figure 2.3: Symbolic execution of foo with summaries

2.2 Separation Logic

We explore the theory and pragmatics of separation logic (SL) [11, 12], the other key component of our

project. We start by going over its Hoare logic foundations, address the major breakthrough that was the

separating conjunction P * Q, and finish with an exploration of the possibilities that SL offers as a way to

derive function specifications.

2.2.1 Foundations: Hoare Logic

The foundations of separation logic lie in Hoare logic [24], a formal system for reasoning mathematically

about the correctness of programs. The central feature of Hoare logic is the Hoare triple:

{P}C {Q} (2.1)

This notation is also called a partial correctness specification, and it means that for a command C, P

and Q are respectively its pre- and post-conditions. From this it follows that the Hoare triple necessarily

17

holds if and only if when C is executed in a state satisfying the pre-condition P and C terminates,

the resulting state satisfies the post-condition Q. An example of an Hoare triple that evaluates to true

would be:

{X = x} Y := X {X = x ∧ Y = x} (2.2)

There are a number of additional intricacies in Hoare logic, but they are not of particular interest to us

and are thus omitted. For now, we note only that while it works extremely well for programs manipulating

primitive data types (e.g., integers, strings), proofs involving pointer data structures are much harder

to derive when working with standard Hoare logic. Due to these difficulties, a number of methods for

reasoning about pointers were proposed over the years, but it was only at the turn of the century that

one such idea gained major traction.

2.2.2 The Separating Conjunction

That idea was separation logic [11,12], developed by Reynolds and a few others around the 2000s, and

their main contribution was the separating conjunction P * Q. Separation logic extends traditional Hoare

logic by modelling not only a store (i.e., a mapping of variables into values), but also a heap, which sup-

ports pointers by finitely mapping locations (or addresses) into values. Values are often simply assumed

to be integers, although in practice they can also represent addresses or atomic values. Mathematically,

we can define them as:

Store ≜ V ars→ V als Heap ≜ Addrs ⇀fin V als

V als = Ints ⊇ Addrs ∪Atoms Addrs ∩Atoms = ∅ nil ∈ Atoms
(2.3)

What distinguishes separation logic from other proposed Hoare logic extensions, however, is the

separating conjunction. This conjunction, denoted in the literature as P * Q, states that assertions P and

Q hold for disjoint sections of memory [12]. This seemingly trivial operator allows us to effectively model

much of the behaviour of functions that access and mutate pointer data structures, and is the foundation

upon which all of separation logic is built.

The following example comes from the work of O’Hearn [25], and is often considered to be the hello

world of separation logic:

x 7→ y ∗ y 7→ x (2.4)

18

Which is to say that x points to y and separately (i.e., in another memory location) y points to x.

Since the separating conjunction states that the memory sections must be disjoint, this means that x

and y must be different values, i.e., x (respectively y) cannot point to itself. We can visualize this as:

Figure 2.4: Visualizing x 7→ y ∗ y 7→ x

What does this mean in practice? Let us suppose that x = 10 and y = 20. From the perspective of

the program, both x and y are aware of these equalities. This means that memory cell x = 10 holds the

value 20, represented as x 7→ 20, while memory cell y = 20 holds the value 10, represented as y 7→ 10.

Thus, from the perspective of the first cell, x = 10 ∧ y = 20 ∧ x 7→ 20 holds, but no information regarding

the contents of y = 20 is known, and vice-versa for the latter.

The field of separation logic is vast and there is a large amount of research in the area that falls

outside of the scope of this project. Further directions can be found in the work of O’Hearn [25] for the

interested reader.

2.2.3 Specifications

And so we arrive at function specifications. A specification is a Hoare triple {P}C {Q} where instead of

a simple command, C is a function signature, while P and Q are its respective pre- and post-conditions.

Specifications prove themselves useful as a way to mathematically characterize the behaviour of func-

tions. If, for instance, we had a procedure for swapping the values of two pointers, x and y, we could

write the following specification:

{x 7→ a ∗ y 7→ b} void swap(int *x, int *y) {x 7→ b ∗ y 7→ a} (2.5)

A question, then, naturally arises: could we scale this to other (perhaps external) functions, such as

those provided by LIBC? The answer is yes, as we will show in the following paragraphs.

19

Finding a specification for strlen. In line with our example from the previous section, let us now find

a specification for strlen. Recall that strlen receives a string s as its argument and returns its length.

How can we find this specification? The pre-condition is simple enough: we know that s is a string

with a certain length (let us say ν). We can represent this as the predicate str(s, ν). We do not know as

of yet how str(s, ν) is defined; for now we consider only that it is an opaque predicate which correctly

characterizes a string. The post-condition is similarly simple: strlen does not change the string itself,

so the assertion str(s, ν) remains. What does change is the return value, which we now know to be ν.

Let us call the return value ret and derive the assertion ret = ν. With this we have our post-condition:

str(s, ν) ∗ ret = ν.

Taking our pre- and post-conditions, we thus obtain the following specification for strlen:

{str(s, ν)} size t strlen(char *s) {str(s, ν) ∗ ret = ν} (2.6)

And how do we define the predicate str(s, ν)? Let us recall what we know about strings: they are

null-terminated sequences of characters whose length is equal to the number of characters up until the

null terminator. This yields an obvious result: if the first character is the null terminator, the string’s length

is 0. We can represent this as s 7→ ∅ ∗ ν = 0.

The more common case is when the first character is not the null terminator (s 7→ c ∗ c ̸= ∅).

Here, we do not know the length of s, since the next characters are opaque. We do know, however,

that the length must be equal to 1 plus the length of s + 1, whatever the latter is. Since the predicate

does not concern itself with the actual length, only that such a length does exist, we can write this as

∃κ. s 7→ c ∗ c ̸= ∅ ∗ ν = κ+ 1 ∗ str(s+ 1, κ). This yields the full definition of str(s, ν):

str(s, ν) ≜ s 7→ ∅ ∗ ν = 0

∨ ∃κ. s 7→ c ∗ c ̸= ∅ ∗ ν = κ+ 1 ∗ str(s+ 1, κ)
(2.7)

20

3
Related Work

Contents

3.1 Summaries in Symbolic Execution . 23

3.2 SL-Based Synthesis . 25

21

22

We survey the existing literature relating to our research. In particular, we give an overview of different

types of summaries for symbolic execution in §3.1 and discuss some of the existing techniques for

separation-logic-based synthesis in §3.2.

3.1 Summaries in Symbolic Execution

There is a vast body of work on symbolic summaries, particularly in the fields of first-order summaries [5,

26, 27] and structured summaries [28, 29]. Interestingly, and despite their widespread use in practice,

operational summaries [7] have been much more neglected by researchers. Below, we give an overview

of all three types regarding both academic research and use in popular symbolic execution tools.

3.1.1 Operational Summaries

We say operational summaries to be those of the style described in §2.1, i.e., reusable code snippets that

model the symbolic execution of concrete functions by directly interacting with the symbolic state [6, 7].

In other words, operational summaries are a loose grouping of symbolic summaries developed for the

express purpose of usage in symbolic execution tools. Support is varied: popular examples include

angr [8], Binsec [9] and Manticore [10] (which we previously mentioned), but also KLEE [30], Otter [31]

and S2E [32], all of which implement some variation of symbolic summaries in a tool-specific manner.

On that note, we also highlight Ramos et al. [7], who propose a tool-independent API for developing

operational summaries.

In Table 3.1, we present the abridged results of a survey of these tools conducted by Ramos et

al. [7]. We specifically highlight the language in which the summaries were written, the number of

implemented summaries and the median/maximum number of lines of code (LoC) across the tool’s

summaries. Interesting findings include the clear advantage of angr in terms of implemented summaries,

with Otter and Manticore closely following. Also of note is the fact that even though the length of the

most complex summaries (in terms of LoC) varies substantially across tools, the median length usually

stays in the 10-20 LoC range (with the notable exception of Binsec), suggesting that most summaries

tend to be relatively short irrespective of the tool in question.

3.1.2 First-Order Summaries

A first-order summary is a simple first-order formula with either limited support for reasoning about

heap memory or no support at all. Early work in the area is attributed to Godefroid [5], with the author

introducing SMART, an algorithm for dynamic test generation that extends previous solutions by doing it

compositionally. SMART ’s main idea is to test functions in isolation and produce first-order summaries

23

Table 3.1: Support for operational summaries in popular symbolic execution tools

Tool Language NSummaries Med. LoC Max. LoC

angr Python 128 9.5 238

Manticore Python 86 14 59

KLEE C 55 18 144

Otter C 109 12 151

S2E C++ 26 26 69

Binsec OCaml 20 50 102

that can later be reused to analyse higher-level functions. Later work builds upon these insights by

leveraging lazy exploration [33] and under-/over-approximating summaries [34], in addition to applying

first-order summaries in the context of loop summarization [35]. Still, no support is provided for reasoning

about the heap.

Gopan and Reps [26] propose a method for automatically constructing first-order summaries for

library functions through an analysis of their low-level implementation. The produced summaries consist

of a set of error triggers and a set of summary transformers. Error triggers are assertions over a program

state that, if satisfied, indicate the possible occurrence of a program failure, while summary transformers

specify how the function call might affect the program state. Generation of summaries consists of three

main phases: (i) intermediate representation (IR) recovery, (ii) numeric program generation, and (iii)

numeric analysis and summary construction. In the first phase, a value-set analysis is performed to

recover low-level information (e.g., accessed variables, parameter-passing details). In the second phase,

a numeric program is generated from the obtained IR, capturing the behaviour of the library function.

Finally, in the third phase, the generated numeric program is fed into an off-the-shelf numeric analyser,

which then generates the set of error triggers and the set of summary transformers. As is the case with

other first-order summaries, produced formulas can only express numerical properties, with operations

such as those involving heap manipulation not being accurately modeled.

3.1.3 Structured Summaries

Structured summaries are similar to first-order summaries in many respects, but distinguish themselves

by introducing some sort of structure to the elements of symbolic execution, which allows them to reason

about the heap. Qiu et al. [29], for instance, introduce memoization trees, a tree-like data structure that

captures the various paths in a function and their respective path conditions (including constraints on the

heap). Fragoso Santos et al. [28], on the other hand, propose JaVerT 2.0, a compositional symbolic ex-

ecution tool for JavaScript that allows for the generation of separation-logic-based specifications, which

can then be used as function summaries by its symbolic execution engine at a later stage.

24

3.2 SL-Based Synthesis

There is a long line of work on separation-logic-based synthesis, with many different applications having

already been proposed. We choose to focus on test synthesis [16, 36, 37], program synthesis [14] and

wrapper synthesis [38], detailing how we can make use of some of the ideas put forth by each of them.

We finish with some closing remarks about the status quo of SL-based synthesis.

3.2.1 Test Synthesis

Early work on test synthesis can be attributed to Claessen and Hughes [36], who introduced Quickcheck,

a Haskell-based tool for generating comprehensive test-suites from type declarations. Years later, Seidel

et al. [37] proposed Target, which added support for precise refinement types. Cosette, from Fragoso

Santos et al. [16], builds upon these ideas by allowing for the generation of symbolic tests from sep-

aration logic specifications. Crucially, it uses the concept of unification to find bindings for variables

in assertions and then translate these bindings to actual symbolic tests. Cosette unification was the

basis of unification plans [28], which aim at addressing the problem of dependencies between simple

assertions and are of particular interest to us.

3.2.2 Program Synthesis

Polikarpova and Sergey [14] propose an extension to separation logic in the form of synthetic separation

logic (SSL). SSL is based on the insight that since type theories are proof systems1, proof search is

also program synthesis. Through the introduction of a transforming entailment judgement P ⇝ Q | c

(meaning that a heap satisfying an assertion P transforms into a heap satisfying an assertion Q via a

program c), the authors were able to derive a set of rules that allow for the synthesis of functions from SL

specifications. These ideas were then implemented in SuSLik, which was proven to be able to handle

functions manipulating structures such as lists and trees. More recently, the authors further extended

their research to the fields of cyclic program synthesis [40] and synthesis certification [41]. Itzhaky et

al. [42] present a thorough overview of the current state-of-the-art in program synthesis.

3.2.3 Wrapper Synthesis

Nguyen et al. [38] propose SLICK, a separation-logic-based runtime checker for Java programs. Cru-

cially, SLICK receives a program annotated with pre- and post-conditions and generates function wrap-

pers that require the pre-condition to be met at invocation time and ensure that the post-condition is met

when execution finishes. It achieves this by translating assertions to executable code which ensures

1From the Curry-Howard correspondence [39].

25

that the current heap is compatible with the assertion (i.e., the program state is a model of the formula).

Interestingly, SLICK makes use of a partial ordering by means of a topological sort not unlike unification

plans [28], which allows the system to find bindings for variables that are not known a priori. These ideas

form the basis of matching plans, as discussed in §4.4.

3.2.4 Closing Remarks

The key takeaway of this section is that, despite the existence of an extensive body of work on separation-

logic-based synthesis, no solutions exist as of yet for symbolic summary synthesis (to the best of our

knowledge). We detail our proposal for such a solution in subsequent chapters.

26

4
Specification-Driven Function

Synthesis

Contents

4.1 Overview . 29

4.2 Syntax . 30

4.3 Input/Output Parameters . 31

4.4 Matching Plans . 32

4.5 Matching Trees . 35

4.6 Code Generation . 41

27

28

We introduce a methodology to synthesise functions from SL-style specifications. We start by giving

an overview of the process in §4.1, and then proceed to discuss the specifics in sections §4.2 through

§4.5. Finally, we detail the actual code generation procedure in §4.6.

4.1 Overview

In the following pages, we delve into the synthesis of functions from specifications. In particular, we aim

to have a procedure for translating specifications into functions by the end of this chapter. The main

steps of the translation process are: (i) pre-condition resource consumption, and (ii) post-condition

resource/constraints production.

Before moving on to the specifics, let us start by looking at a simple example. Consider the specifi-

cation for a function f shown below:

{x 7→ #y ∗ x+ 1 7→ #z ∗ #z 7→ #w︸ ︷︷ ︸
Pre

} f(x) {Pre ∗ ret = #y +#w } (4.1)

Figure 4.1 offers a visualization of the program state at the start of f (i.e., a visualization of Pre).

Intuitively, f takes the first two elements of a linked list (at addresses x and #z) and adds them, returning

the obtained value as described in the assertion ret = #y+#w. Furthermore, one can also see that the

compound assertion Pre appears in both the pre- and post-conditions, which means that this particular

function does not change the program state.

Figure 4.1: Visualizing the program state

Given such a specification, our goal is to produce the code that computes ret. To do this, we first

need to synthesise the code that determines the values of #y and #w from the value of x. In this

example, this is trivial: we find #y by reading the value stored at address x and #w by reading the value

at address #z (which itself is stored at address x+ 1). Translating this to code is straightforward:

int y = *x;
Pre ⇝

int w = *(*(x + 1));
(4.2)

Having computed #y and #w, computing ret is trivial: we need only return the result of evaluating

#y +#w. Putting it all together, this yields the full synthesised function f presented in Figure 4.2.

29

1 int f(int *x) {

2 int y = *x;

3 int w = *(*(x + 1));

4

5 return y + w;

6 }

Figure 4.2: Full synthesised function f

In general, for a specification such as f ’s, the two main tasks to perform are: (i) synthesising the

code that finds the bindings of the logical variables, and (ii) producing the return value with the help of

those bindings. These can roughly be equated with the pre-condition consumption and post-condition

production steps we previously hinted at, and will be explored in greater detail in subsequent sections.

Before closing this section, a word about the different groupings of specifications is warranted. As

we mentioned previously, f does not affect the program state, and is therefore classified as having no

side effects. Such a statement, however, implies that there must also be a grouping for specifications

with side effects. These would be specifications for functions which change the program state by writing

to the memory (e.g., a function that copies a list). Such specifications would require an additional step

to update the memory in the manner specified by the post-condition. In this thesis, we focus only on

functions without side effects, leaving the handling of functions with side effects for future work.

4.2 Syntax

The syntax of our assertion language is given below. Values, v ∈ V, include numbers (integers and

floats) and characters. Types, τ ∈ T , are the standard C types: integers and floats of varying sizes

(e.g., 32-bit, 64-bit, etc.), both signed and unsigned, pointers, and the generic type ⊤ (equivalent to C’s

void ∗). Expressions, e ∈ E , include values, program variables x ∈ X , and various unary and binary

algebraic operators; Boolean assertions, π ∈ Π, include the truth values true and false, the standard

relational operators (i.e., =, ̸=, >, ≥, < and ≤), as well as the logical operators ∧, ∨ and ¬.

The syntax of our assertion language

v ∈ V ≜ n ∈ N | c ∈ C

τ ∈ T ≜ int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | float32 | float64 | ∗ τ | ⊤

e ∈ E ≜ v | x ∈ X | ⊖ e | e1 ⊕ e2

π ∈ Π ≜ true | false | e1 ⊕r e2 | π1 ∧ π2 | π1 ∨ π2 | ¬π

p, q ∈ SA ≜ π | e1 := e2 | e1 7→τ e2 | α(ē; e′)

P, Q ∈ A ≜ emp | p | P ∗ Q

pred α(x̄; y) {P̄} ∈ Pred {P} fn f(x̄) {Q} ∈ Spec

30

Simple assertions, p ∈ SA, are either Boolean assertions, directed equalities (not to be confused with

the regular equality; see §4.3), cell assertions, or predicate assertions. The cell assertion, e1 7→τ e2,

states that the memory cell pointed to by e1 holds the value e2, and that e2 has type τ . Predicate

assertions are of the form α(ē; e′), where ē is a list of arguments and e′ is a special (optional) argument

to be used for synthesis purposes (see §4.3). Assertions, P ∈ A, are either the constant emp, a

simple assertion, or two assertions connected by the separating conjunction. Predicate definitions are

of the form pred α(x̄; y) {P̄}, where α is the predicate name, x̄ a list of the formal parameters, y a

special parameter, and P̄ a sequence of assertions, each corresponding to a predicate case (i.e., the

full predicate definition is a disjunction of the elements of P̄). Function specifications are of the form

{P} fn f(x̄) {Q}, where P and Q are the pre- and post-conditions respectively, f is the function identifier,

and x̄ is the set of formal parameters. Notice that specifications do not include the function body (i.e.,

they use function signatures); this is because our purpose is precisely to synthesise the body of a

function from its pre- and post-conditions.

4.3 Input/Output Parameters

The overall goal of our synthesis process is to find the bindings of logical variables. Thus, a natural

question arises: how do we find such bindings when matching an assertion against a given program

state? Understanding the answer is crucial if we are to synthesise any sort of useful code from the

specifications we are given. Consider, for instance, the assertion x 7→ #y ∗ #y 7→ #z and the state

σ = {x 7→ l} (where l is some memory position). It is rather intuitive that we need to know #y to learn

#z, and we can learn #y from x, but how do we formalise this? Is there a way to generalize it for other

types of assertions?

Definition 4.1 gives such a formalisation. The idea is to define a set of input variables and a set of out-

put variables for a simple assertion. An input variable will then be a variable that we must “know” before

encountering the simple assertion, while an output variable will be the one that we “learn”. For example,

in the simple assertion x 7→ #y, x would be the input variable, while #y would be the output variable.

Definition 4.1 (Input and Output Variables). Given p ∈ SA, the function io : SA → ℘(X) × ℘(X) is

defined as follows:

io(π) ≜ (vars(π), ∅)

io(e1 := e2) ≜ (vars(e2), outsE(e1))

io(e1 7→τ e2) ≜ (vars(e1), outsE(e2))

io(α(e1, . . . , en; e
′) ≜ (

⋃n
i=1 vars(ei), outsE(e

′))

31

where vars : E ∪ Π→ ℘(X) returns the set of variables in an expression e ∈ E or π ∈ Π, and outsE : E →

℘(X) is defined as:

outsE(x) ≜ {x} outsE(e) ≜ ∅ (if e ̸∈ X)

Given the definition of io, the sets of input and output variables of p, respectively ins : SA → ℘(X)

and outs : SA → ℘(X), are defined as follows:

io(p) = (X,−)

ins(p) ≜ X

io(p) = (−, Y)

outs(p) ≜ Y

Here also lies the necessity for distinguishing regular and directed equalities. Suppose we had a

single type of equality; how would we know if we needed to “learn” any bindings from it (as opposed

to it simply being a Boolean assertion/constraint)? For instance, what would be the input variable(s) of

#y = x? Just x? Both #y and x? The solution is to introduce a directed equality, #y := x, such that

the input variable is x and the output variable is #y. Conversely, the input variables of #y = x are both

x and #y, and there are no output variables.

What about parameters? In §4.2, we mentioned that a predicate definition has a special parameter,

but why the need to distinguish it from it the rest? As it turns out, not all parameters are made equal.

Input parameters serve a similar purpose to formal parameters in function specifications, in the sense

that they must be known before invoking the predicate. Output parameters, on the other hand, are what

we learn from the predicate. For instance, pred α (x, y; z) {P̄} has input parameters x and y and output

parameter z. In general, predicate definitions may have an arbitrary number of output parameters; for

the sake of simplicity, however, we admit that they have only one.

4.4 Matching Plans

So far, we have seen that we can define what we “know” and what we “learn” about simple assertions

through the concept of input and output parameters. But this knowledge is relatively uninteresting for an

isolated simple assertion; after all, it should be relatively trivial to learn the bindings of logical variables

in a correctly formulated directed equality or cell assertion. Much more interesting is what happens in

compound assertions. How can we learn bindings in those cases? Is there only one way to do it? Are

there multiple ways? And what are the building blocks of this “learning” process?

We start by addressing the latter question. Recall from §4.2 that an assertion is either either the

constant emp, a simple assertion, or two assertions connected by the separating conjunction. Thus, the

building blocks of assertions are simple assertions, and for any assertion we can derive a sequence of

32

EMPTY

MPG([], X) ⇝ []

CONT
p⃗ = p⃗1 ++ [p] ++ p⃗2 ins(p) ⊆ X

MPG(p⃗1 ++ p⃗2, X ∪ outs(p)) ⇝ p⃗ ′

MPG(p⃗, X) ⇝ p : p⃗ ′

Figure 4.3: Matching Plan Generation

the simple assertions that compose it (in the emp case, we derive the empty sequence). We call this

sequence a matching plan [16,28].

An interesting fact to note is that matching plans are not unique: in fact, every permutation of a

matching plan is still a matching plan of the original assertion. The question is, are all of them useful?

Take, for instance, the assertion x 7→ #y ∗ #z 7→ #w ∗ x + 1 7→ #z. An obvious matching plan is

[x 7→ #y, #z 7→ #w, x + 1 7→ #z]. Let us assume that x is the only variable that we know a priori.

There is a point in the sequence (specifically, #z 7→ #w) where we want to learn #w without knowing

#z. Notice that this would not happen for the matching plan [x 7→ #y, x+ 1 7→ #z, #z 7→ #w]. Such a

matching plan allows us to learn the bindings of all unknown variables, and is thus said to be valid. Valid

matching plans are the backbone of our synthesis process, and are formalised in Definition 4.2.

Definition 4.2 (Matching Plan and Valid Matching Plan). A matching plan p⃗ ∈ MP is a sequence of

simple assertions. A matching plan p⃗ = [p1, p2, . . . , pn] is said to be valid w.r.t. to a set X ⊆ X of known

variables, written valid(p⃗, X), if and only if:

∀ 1 ≤ i ≤ n. ins(pi) ⊆ X ∪
i−1⋃
k=1

outs(pk)

Finding a valid matching plan for a given assertion is a problem of combinatorial nature which, in

practice, requires the implementation of a search algorithm with backtracking to solve. For the sake of

simplicity, we model the behaviour of this algorithm through a set of non-deterministic rules. We refer

the reader to the implementation to see the transposition of these rules to a deterministic context.

Figure 4.3 defines a non-deterministic procedure MPG : MP × ℘(X) → MP that, given a matching

plan p⃗ and a set of known variables X, derives a valid rearrangement of p⃗ if any such rearrangement

exists. In particular, we write MPG(p⃗, X) ⇝ p⃗ ′ to mean that p⃗ ′ is a valid rearrangement of p⃗. MPG has

two main cases:

• [EMPTY]. The empty matching plan is simply mapped to itself.

• [CONT]. When given a non-empty matching plan p⃗, the procedure MPG finds a simple assertion

p in p⃗ for which we already know all input variables; this will be the head of the generated valid

matching plan. Then, the procedure calls itself recursively on the matching plan resulting from the

extraction of p from p⃗ (i.e., p⃗1++p⃗2), adding the output variables of p to the setX of known variables.

33

MPG([], {x,#y,#z,#w}) ⇝ []
ins(#z 7→ #w) = {#z} ⊆ {x,#y,#z} outs(#z 7→ #w) = {#w} EMPTY

MPG([#z 7→ #w], {x,#y,#z}) ⇝ [#z 7→ #w]
ins(x+ 1 7→ #z) = {x} ⊆ {x,#y} outs(x+ 1 7→ #z) = {#z}

CONT

MPG([#z 7→ #w, x+ 1 7→ #z], {x,#y}) ⇝ [x+ 1 7→ #z, #z 7→ #w]
ins(x 7→ #y) = {x} ⊆ {x} outs(x 7→ #y) = {#y}

CONT

MPG([x 7→ #y, #z 7→ #w, x+ 1 7→ #z], {x}) ⇝ [x 7→ #y, x+ 1 7→ #z, #z 7→ #w]
CONT

Figure 4.4: Deriving a valid matching plan for [x 7→ #y, #z 7→ #w, x+ 1 7→ #z]

Figure 4.4 shows an execution of MPG for the matching plan [x 7→ #y, #z 7→ #w, x+ 1 7→ #z] and

the set of known variables {x}. The derivation process is straightforward: we apply the CONT rule until

p⃗ is the empty matching plan and we have already learned all variables; then, we apply the EMPTY rule.

We can now formalise the correctness of matching plans generated by MPG. Theorem 4.1 states

that a generated matching plan p⃗ ′ is valid and comprised of the same set of simple assertions as p⃗. Note

that the derivation is stated in terms of an equality instead of the ⇝ operator, denoting a deterministic

application of the non-deterministic procedure.

Theorem 4.1 (Correctness of Matching Plan Generation). For any matching plan p⃗ ∈ MP and set of

variables X ⊆ X , it holds that:

MPG(p⃗, X) = p⃗ ′ =⇒ asrts(p⃗ ′) = asrts(p⃗) ∧ valid(p⃗ ′, X)

where asrts(p⃗) denotes the set of simple assertions in p⃗.

Proof. The proof is by induction on the structure of the derivation of MPG(p⃗, X) ⇝ p⃗ ′. For convenience,

we restate the hypothesis of the theorem: MPG(p⃗, X) = p⃗ ′ (H1). The base case is [EMPTY], whereas

the inductive case is [CONT].

[EMPTY] Let p⃗ = []. In this case, it follows from H1 that:

I1. p⃗ ′ = MPG(p⃗, X) = MPG([], X) = []

From I1, we conclude that:

I2. asrts(p⃗ ′) = ∅ = asrts(p⃗)

I3. valid(p⃗ ′, X) = valid([], X) = True

[CONT] Let p⃗ = p⃗1 ++ [p] ++ p⃗2 (H2) and ins(p) ⊆ X (H3). In this case, it follows from H1 that there

is a sequence of assertions p⃗ ′′ such that:

I1. MPG(p⃗1 ++ p⃗2, X ∪ outs(p)) = p⃗ ′′

I2. p⃗ ′ = p : p⃗ ′′

34

Applying the induction hypothesis to I1, we conclude that:

I3. asrts(p⃗ ′′) = asrts(p⃗1 ++ p⃗2)

I4. valid(p⃗ ′′, X ∪ outs(p))

From H2, it follows that:

I5. asrts(p⃗) = asrts(p⃗1) ∪ asrts(p⃗2) ∪ {p}

From I2, it follows that:

I6. asrts(p⃗ ′) = {p} ∪ asrts(p⃗ ′′)

From I3, I5 and I6, we conclude that:

I7. asrts(p⃗ ′) = {p} ∪ asrts(p⃗ ′′)

= {p} ∪ asrts(p⃗1 ++ p⃗2)

= {p} ∪ asrts(p⃗1) ∪ asrts(p⃗2)

= asrts(p⃗)

From I4 and H3, it follows from Definition 4.2 that:

I8. valid(p : p⃗ ′′, X) ≡ valid(p⃗ ′, X)

4.5 Matching Trees

Moving up in the syntactic ladder, we arrive at predicate definitions and function specifications. We set

aside the latter for now, and focus on the former. Why do we need to address predicate definitions?

Because we want to know how to compute the output parameter from the input parameters, which is

of the utmost importance when matching predicate assertions. Thus, we revisit a previous question:

how can we learn the bindings of logical variables in predicate definitions? Can we use matching plans,

similarly to how we did in the case of assertions?

The answer, as it turns out, is no, although the reason why might not be immediately obvious. Con-

sider the following predicate definition, which models the absolute value of a given number:

pred abs(x; y) {
x ≥ 0 ∗ y := x;

x < 0 ∗ y := −x
}

(4.3)

We could derive the matching plans [x ≥ 0, y := x] and [x < 0, y := −x] for the first and second

case respectively, but these do not tell us much. Informally, we know that what the predicate is actually

35

saying is that y := x if x ≥ 0, and y := −x otherwise, but we would not be able to learn this from the

matching plans alone.

So why can we not use matching plans to express predicate definitions? Because predicates are

(normally) a disjunction of assertions, each corresponding to a possible case, and we do not know a pri-

ori which of the cases applies. This means that we cannot express predicate definitions in terms of a sin-

gle matching plan, and instead require a structure that can coalesce the matching plans corresponding

to the various cases in a single format. We call this structure a matching tree, and formalise it in Defini-

tion 4.3. A matching tree is either the leaf node •, a single node ⟨p, ψ⟩ (corresponding to a non-branching

simple assertion) or a double node ⟨π, ψ1, ψ2⟩ (corresponding to a branching simple assertion). We can

now express the predicate abs as the matching tree ψ = ⟨x ≥ 0, ⟨y := x, •⟩, ⟨y := −x, •⟩⟩.

Definition 4.3 (Matching Tree). A matching tree ψ ∈ Ψ is defined as:

ψ ∈ Ψ ≜ • | ⟨p, ψ⟩ | ⟨π, ψ1, ψ2⟩

Similarly to matching plans, we also want to be able to express that a matching tree is able to learn

the bindings of all unknown variables, i.e., that it is valid. In the case of matching trees, this means that

we want all paths that they coalesce to be valid matching plans. Thus, in order to formally define a valid

matching tree, we first need to define an auxiliary function tp that, given a matching tree ψ, returns the

set of all possible paths from root to leaves. We formalise this function in Definition 4.4.

Definition 4.4. Given ψ ∈ Ψ, the function tp : Ψ→ ℘(MP) is defined as follows:

tp(•) ≜ {[]}

tp(⟨p, ψ⟩) ≜ {p : p⃗ | p⃗ ∈ tp(ψ)}

tp(⟨π, ψ1, ψ2⟩) ≜ {π : p⃗1 | p⃗1 ∈ tp(ψ1)} ∪ {¬π : p⃗2 | p⃗2 ∈ tp(ψ2)}

We are now in a position to formally define valid matching trees, which we do in Definition 4.5. Notice

that if we apply this to the matching tree derived for abs, we conclude that it is indeed valid, since both

[x ≥ 0, y := x] and [x < 0, y := −x] are valid matching plans.

Definition 4.5 (Valid Matching Tree). A matching tree ψ ∈ Ψ is said to be valid w.r.t. to a set X ⊆ X of

known variables, written valid(ψ, X), if and only if every p⃗ ∈ tp(ψ) is a valid matching plan w.r.t. to X.

As is the case with matching plans, deriving a valid matching tree from a set of assertions is also a

problem of combinatorial nature. In practice, we solve this by first deriving valid matching plans for each

individual assertion and then searching for a matching tree that correctly coalesces them. For the sake

of simplicity, we again model the behaviour of this algorithm through a set of non-deterministic rules,

and refer the reader to the implementation to see their transposition to a deterministic context.

36

EMPTY
∀p⃗ ∈ # »pp. p⃗ = []

MTG(# »pp, X) ⇝ •

SINGLE NODE
∀p⃗ ∈ # »pp. p ∈ p⃗ ins(p) ⊆ X

MTG(# »pp \ss p, X ∪ outs(p)) ⇝ ψ

MTG(# »pp, X) ⇝ ⟨p, ψ⟩

DOUBLE NODE
»pp = # »ppt ⊎ # »ppf ∀p⃗ ∈ # »ppt. π ∈ p⃗ ∀p⃗ ∈ # »ppf . ¬π ∈ p⃗ ins(π) ⊆ X

MTG(# »ppt \ss π, X) ⇝ ψt MTG(# »ppf \ss ¬π, X) ⇝ ψf

MTG(# »pp, X) ⇝ ⟨π, ψt, ψf ⟩

Figure 4.5: Matching Tree Generation

Before formally presenting these rules, we need to define two auxiliary operators, \s : MP → SA →

MP and \ss : ℘(MP) → SA → ℘(MP). Informally, p⃗ \s p represents the matching plan obtained by

removing the simple assertion p from p⃗ (e.g., [p1, p2, p3] \s p2 = [p1, p3]), while # »pp \ss p is the result of

mapping p⃗ \s p to a set # »pp. Put formally:

∃ p⃗1, p⃗2. p⃗ = p⃗1 ++ [p] ++ p⃗2

p⃗ \s p ≜ p⃗1 ++ p⃗2

»pp \ss p ≜ { p⃗ \s p | p⃗ ∈ # »pp }

Figure 4.5 defines a non-deterministic procedure MTG : ℘(MP)× ℘(X)→ Ψ that, given a set of (not

necessarily valid) matching plans # »pp and a set of known variables X, derives a matching tree coalescing

valid rearrangements of the matching plans in # »pp (henceforth referred to as a valid tree-rearrangement

of # »pp) if any such rearrangement exists. In particular, we write MTG(# »pp, X) ⇝ ψ to mean that ψ is a

valid tree-rearrangement of # »pp. MTG has three main cases:

• [EMPTY]. The set containing only empty matching plans is simply mapped to a leaf node.

• [SINGLE NODE]. If there is a single assertion p, for which we already know all input variables,

such that p occurs in every p⃗ ∈ # »pp, MTG generates a single node and labels it with p. Then, the

procedure calls itself recursively on the set of matching plans resulting from the extraction of p from

every p⃗ ∈ # »pp (i.e., # »pp \ss p). Finally, the matching tree resulting from the recursive call is added as

a child of the single node.

• [DOUBLE NODE]. If there is a Boolean assertion π, for which we already know all input variables,

such that, for every p⃗ ∈ # »pp, either π or ¬π occurs in p⃗, MTG generates a double node and labels it

with π. Then, the procedure calls itself recursively on the set of matching plans resulting from the

extraction of π from every p⃗ ∈ # »pp where π ∈ p⃗ (i.e., # »ppt\ssπ) and the set of matching plans resulting

from the extraction of ¬π from every p⃗ ∈ # »pp where ¬π ∈ p⃗ (i.e., # »ppf \ss ¬π). Finally, the matching

trees resulting from the recursive calls are added as children of the double node (the former as the

left branch and the latter as the right branch).

37

SINGLE NODE

EMPTY

MTG([], {x, y}) ⇝ •
outs(y := x) = {y}

ins(y := x) = {x} ⊆ {x}
MTG({[y := x]}, {x}) ⇝ ⟨y := x, •⟩

MTG([], {x, y}) ⇝ •
outs(y := −x) = {y}

ins(y := −x) = {x} ⊆ {x}
EMPTY

MTG({[y := −x]}, {x}) ⇝ ⟨y := −x, •⟩
SINGLE NODE

x ≥ 0 ∈ [x ≥ 0, y := x] x < 0 ∈ [x < 0, y := −x] ins(x ≥ 0) = {x} ⊆ {x}
{[x ≥ 0, y := x], [x < 0, y := −x]} = {[x ≥ 0, y := x]} ⊎ {[x < 0, y := −x]}

MTG({[x ≥ 0, y := x], [x < 0, y := −x]}, {x}) ⇝ ⟨x ≥ 0, ⟨y := x, •⟩, ⟨y := −x, •⟩⟩
DOUBLE NODE

Figure 4.6: Deriving a valid matching tree for {[x ≥ 0, y := x], [x < 0, y := −x]}

Figure 4.6 shows an execution of MTG for the set of matching plans {[x ≥ 0, y := x], [x < 0,

y := −x]} (corresponding to the abs predicate) and the set of known variables {x}. The derivation

process works as follows:

• We start by applying the DOUBLE NODE rule, since the two matching plans share no simple as-

sertions. Hence, we select the assertion x ≥ 0, which occurs in the matching plan [x ≥ 0, y := x],

and whose negation (i.e., x < 0) occurs in the matching plan [x < 0, y := −x]. Having selected

x ≥ 0 as our branching assertion, we proceed to check that its input parameters are in the set

of known variables {x}, which is indeed the case. Finally, we simply have to derive the matching

trees corresponding to the extraction of x ≥ 0 from the first matching plan and the extraction of

x < 0 from the second (respectively the derivations of [y := x] and [y := −x]).

• As the derivations of [y := x] and [y := −x] are similar, we explain only the former. The derivation

of a matching tree for [y := x] is straightforward, as it contains a single matching plan consisting of

a single directed equality. Thus, we simply have to check that the input parameters of the assertion

are contained in the set of known variables {x}; since that is the case, we apply the SINGLE NODE

rule. Finally, we need to derive a matching tree for the set containing only an empty matching plan,

which, following the EMPTY rule, corresponds to the leaf node.

As was the case with matching plans, we can also formalise the correctness of matching trees

generated by MTG. Theorem 4.2 states that a generated matching tree ψ is valid and comprised of the

same set of simple assertions as # »pp. Again, we state the derivation in terms of an equality instead of the

⇝ operator, denoting a deterministic application of the non-deterministic procedure.

Theorem 4.2 (Correctness of Matching Tree Generation). For any set of matching plans # »pp ∈ ℘(MP)

and set of variables X ⊆ X , it holds that:

MTG(# »pp, X) = ψ =⇒ asrts(ψ) = asrts(# »pp) ∧ valid(ψ, X)

where asrts(# »pp) (likewise, asrts(ψ)) denotes the set of simple assertions in # »pp (likewise, ψ).

38

Proof. The proof is by induction on the structure of the derivation of MTG(# »pp, X) ⇝ ψ. For convenience,

we restate the hypothesis of the theorem: MTG(# »pp, X) = ψ (H1). The base case is [EMPTY], whereas

the inductive cases are [SINGLE NODE] and [DOUBLE NODE].

[EMPTY] Let # »pp = {[], . . . , []}. In this case, it follows from H1 that:

I1. ψ = MTG(# »pp, X) = MTG({[]}, X) = •

From I1, we conclude that:

I2. asrts(ψ) = ∅ = asrts(# »pp)

I3. valid(ψ, X) = valid(• , X) = True

[DOUBLE NODE] It follows from the case that there are two sets of matching plans # »ppt and # »ppf , an

assertion π, and matching trees ψt and ψf such that:

H2. # »pp = # »ppt ⊎ # »ppf

H3. ∀p⃗ ∈ # »ppt. π ∈ p⃗

H4. ∀p⃗ ∈ # »ppf . ¬π ∈ p⃗

H5. ins(π) ⊆ X

H6. MTG(# »ppt \ss π, X) = ψt

H7. MTG(# »ppf \ss ¬π, X) = ψf

H8. ψ = ⟨π, ψt, ψf ⟩

Applying the induction hypothesis to H6 and H7, we conclude that:

I1. asrts(ψt) = asrts(# »ppt \ss π)

I2. valid(ψt, X)

I3. asrts(ψf) = asrts(# »ppf \ss ¬π)

I4. valid(ψf , X)

From H2-H4, it follows that:

I5. asrts(# »pp) = asrts(# »ppt \ss π) ∪ asrts(# »ppf \ss ¬π) ∪ {π,¬π}

From H8, it follows that:

I6. asrts(ψ) = asrts(ψt) ∪ asrts(ψf) ∪ {π,¬π}

From I1, I3, I5 and I6, we conclude that:

I7. asrts(ψ) = asrts(# »pp)

From I2, I4, H5 and H8, it follows from Definition 4.5 that:

I8. valid(⟨π, ψt, ψf ⟩, X) ≡ valid(ψ, X)

39

[SINGLE NODE] The argument is similar to [DOUBLE NODE].

Matching Trees for Specifications. So far, we have seen that matching trees provide us with a mecha-

nism to determine the bindings of existentially quantified variables present in disjunctions of assertions.

In particular, when applied to predicate definitions, they offer us a mechanism to calculate the output

parameter of a given predicate from its input parameters; for example, given the previously introduced

abs predicate, the derived valid matching tree explicitly shows how to calculate the absolute value of a

number x. But how can we leverage matching trees to reason about program specifications? Consider

the specification shown below for a function f that calculates the absolute value of the first element

stored in a linked list:

{x 7→ #y ∗ #y ≥ 0 } fn f(x) { ret := #y }

{x 7→ #y ∗ #y < 0 } fn f(x) { ret := −#y }
(4.4)

This specification is composed of two Hoare triples, each modeling one of the cases: in the first

case, x points to a positive value, so the function returns the value itself; in the second case, x points to

a negative value, so the function returns the symmetric. Just as with the various cases of a predicate,

we can construct a matching tree that models the various possible pre-conditions of a given function. In

this case, a valid matching tree would be ψ = ⟨x 7→ #y, ⟨#y ≥ 0, •, •⟩⟩. This matching tree makes it

easy to determine the value of the logical variable #y from the parameter x. Similarly, using the value

of the variable #y to compute the function’s return value as specified in the post-condition through the

variable ret is a trivial task.

Notice that one could also model this behaviour through a predicate capturing the various cases of

the specification. For instance, we could write an auxiliary predicate faux as follows:

pred faux(x; z) {
x 7→ #y ∗ #y ≥ 0 ∗ z := #y;

x 7→ #y ∗ #y < 0 ∗ z := −#y
}

(4.5)

capturing the behaviour of the function f given above. Then, we could rewrite f as:

{ faux(x; z) } fn f(x) { ret := z } (4.6)

Hence, we expect developers to model branching within specifications using a branching predicate

appearing in the pre-condition. Note that this does not dispense with the need for matching trees in the

40

context of function specifications; it simply means that those matching trees will have a single branch

(i.e., they will coalesce a single matching plan corresponding to the pre-condition).

In what follows, we use matching trees both in the context of predicate definitions to calculate the

output parameter of a predicate from its input parameters, and in the context of function specifications to

calculate the values of logical variables appearing in the pre-conditions from the function’s parameters.

4.6 Code Generation

Having formalised the derivation of matching trees, we are now in a position to explain how we use them

to drive the actual code synthesis process. In §4.6.1 we define a pseudo-language for the generated

code based on statements; in §4.6.2 we explain the compilation process from matching trees to our

statement language.

4.6.1 Syntax

The syntax of statements is given below. Statements, s ∈ Stmt, include: (i) the skip primitive; (ii) typed

operations: the standard variable assignment; symbolic variable generation, x := (τ) symvar(); the

memory read operation, x := (τ) ∗ e; and function calls, x := (τ) f(ē); (iii) sequenced statements;

(iv) the if-then-else conditional; (v) the assume and assert commands; and (vi) the return command.

Functions are of the form fn f(x̄) { s }, where f is the function identifier, x̄ the set of parameters, and s is

the function body.

The syntax of statements

s ∈ Stmt ≜ skip | x := (τ) e | x := (τ) symvar() | x := (τ) ∗ e | x := (τ) f(ē) | s1; s2 |

if (π) {s1} else {s2} | assume π | assert π | return e

4.6.2 Compilation

We can now explain how the compilation process works. In particular, our goal is to show how to

compile a function specification to executable code that can be run symbolically. For instance, consider

the specification shown below for a function f that models the absolute value of a given number through

the abs predicate (see §4.5):

{ abs(x; y) } fn f(x) { ret := y } (4.7)

41

Casrt(π) ≜ assert π

Casrt(x := e) ≜ x := e Ctree(•) ≜ skip

Casrt(x 7→τ y) ≜ y := (τ) ∗ x Ctree(⟨p, ψ⟩) ≜ Casrt(p); Ctree(ψ)
Casrt(x 7→τ v) ≜ y := (τ) ∗ x; assert y = v Ctree(⟨π, ψ1, ψ2⟩) ≜ if (π) {Ctree(ψ1)}
Casrt(α(ē;x)) ≜ x := foldα(ē) else {Ctree(ψ2)}
Casrt(α(ē; v)) ≜ x := foldα(ē); assert x = v

Figure 4.7: Compilation Functions: Casrt (left) and Ctree (right)

Here, our goal is to compile the following functions:

fn foldabs(x) {
if (x ≥ 0) { y := x }
else { y := −x };
return y

}

(4.8)

fn f(x) {
y := foldabs(x);

return y

}

(4.9)

The compilation process for such a function is a complex procedure comprised of a series of simpler

steps. We explain the process in the following (bottom-up) order:

• Assertions and Matching Trees. Assertions are the smallest unit in the compilation process

and are directly compiled to statements that compute the assertion’s output parameters from its

input parameters. Likewise, matching trees are compiled to statements that, given the set of input

parameters, compute the output parameters of the matching tree.

• Predicate Definitions. A predicate definition is compiled to a function that computes the output

parameter of the predicate from its input parameters. We call these fold functions, written foldα for

a given predicate α.

• Function Specifications. The compilation of function specifications is the ultimate goal of

the compilation process. Thus, a specification is compiled to a function that computes its return

value from the set of formal parameters, along with any free logical variables appearing in

the post-condition.

Assertions and Matching Trees. We start by discussing the compilation of assertions and matching

trees. For instance, given the abs predicate, we want to transform the matching tree ψ = ⟨x ≥ 0,

⟨y := x, •⟩, ⟨y := −x, •⟩⟩ into the following statement:

if (x ≥ 0) { y := x } else { y := −x } (4.10)

To this end, we introduce a compilation function Ctree : Ψ → Stmt, formalised in Figure 4.7, along

with an auxiliary function Casrt : SA → Stmt for compiling simple assertions. Informally, Ctree receives

42

a valid matching tree ψ ∈ Ψ and compiles the corresponding statement, while Casrt does the same for

simple assertions. Broadly, Casrt has four main cases:

• Boolean Assertions. A Boolean assertion π is compiled to the statement assert π (i.e., the gen-

erated code checks whether π holds in the current program state), since a Boolean assertion has

no output parameters.

• Directed Equalities. A directed equality, x := e, is compiled to the equivalent statement, which

computes the output parameter x.

• Cell Assertions. We consider two possibilities: if the cell assertion is of the form x 7→τ y, with

y ∈ X , it is compiled to a statement that assigns to y the value pointed to by x (with type τ); if it is

of the form x 7→τ v, with v ∈ V, we assign the value pointed to by x to a temporary variable y and

add an assert y = v statement.

• Predicate Assertions. We consider two possibilities: if the predicate assertion is of the form

α(ē;x), with x ∈ X , it is compiled to a statement that assigns to x the value returned by foldα(ē)

(i.e., the output parameter of the predicate); if it is of the form α(ē; v), with v ∈ V, we assign the

value returned by foldα(ē) to a temporary variable x and add an assert x = v statement. Intuitively,

we assume the existence of a predicate definition for α, as well as its corresponding fold function.

Conversely, Ctree has three cases:

• Leaf Nodes. The leaf node is simply compiled to the skip instruction.

• Single Nodes. A single node ⟨p, ψ⟩ is compiled as follows: first, we compile the simple assertion

p with Casrt; then, we compile the child tree ψ with Ctree and sequence both.

• Double Nodes. A double node ⟨π, ψ1, ψ2⟩ is compiled to the if-then-else conditional, with π as the

condition and the compiled trees ψ1 and ψ2 as each branch respectively.

Predicate Definitions. Having gone through the compilation of matching trees, compiling a predicate

definition is then relatively straightforward. Informally, our goal is to compile a predicate definition to a

function foldα that, given its input parameters, computes the output parameter. For instance, we can

compile the full abs predicate into the following function:

fn foldabs(x) {
if (x ≥ 0) { y := x }
else { y := −x };
return y

}

(4.11)

43

Algorithm 4.1 describes our procedure for compiling predicate definitions of the form pred α(x̄; y) {P̄}.

We start by deriving a valid matching tree from the sequence of assertions P̄ (line 1), which we then

compile to a statement s with Ctree (line 2). Finally, we sequence s with a return y command for the output

parameter, which serves as the body of the compiled function (line 3).

Algorithm 4.1: COMPILEPRED compiles a predicate definition
Input: A predicate definition of the form pred α(x̄; y) {P̄}
Output: The corresponding function fn f(x̄) { s }

1 ψ ← MTG([asrts(Pi) | Pi ∈ P̄], x̄)

2 s← Ctree(ψ)
3 return fn foldα(x̄) { s; return y }

Function Specifications. Recall that compiling a function specification should generate the code that

computes the function’s return value based on its parameters. The difficulty lies in finding the bindings of

logical variables that occur in the pre-condition and are used to describe the function’s output in the post-

condition; for example, the post-condition of the function f uses the logical variable y that appears in the

pre-condition. To determine the bindings of logical variables that occur in the pre-condition, we simply

derive and compile the corresponding valid matching tree. Once the bindings of the logical variables in

the pre-condition are determined, computing the function’s return value is straightforward.

Compiling specifications, however, is not always so simple. A common challenge in the compilation

process is related to free logical variables in the post-condition. Consider, for example, the specification

shown below for a function g that returns a random positive integer:

{ emp } fn g() { ret := x̂ ∗ x̂ > 0 } (4.12)

There are two issues here: how do we compute the return value not knowing the value of x̂, and,

having done so, how do we restrict the value of x̂? Our mechanism for compiling specifications creates a

new symbolic variable for each free variable in the post-condition and restricts the values these variables

can take using an assume statement. In the case of g, it would generate the function:

fn g() {
x̂ := symvar();

assume x̂ > 0;

return x̂

}

(4.13)

Algorithm 4.2 describes our procedure for compiling function specifications. For the sake of simplicity,

it assumes specifications of the form {P} fn f(x̄) { ret := e ∗ π }, where ret is the return value and π

44

a series of restrictions on free logical variables; nonetheless, it should be noted that the theory stays

largely the same when dealing with multiple Hoare triples (such as those we saw in §4.5). Similarly to

the compilation of predicate definitions, we start by deriving a valid matching tree from the assertion P

(line 1), which we compile to a statement s with Ctree (line 2). Then, we determine the set xs containing

the free logical variables of the post-condition (line 3) and generate a fresh symbolic variable for each of

these (line 4). Finally, we add an assume command for the constraints π and the return e statement for

ret, and return the compiled function with the sequenced statements as its body (line 5).

Algorithm 4.2: COMPILESPEC compiles a function specification
Input: A spec of the form {P} fn f(x̄) { ret := e ∗ π }
Output: The corresponding function fn f(x̄) { s }

1 ψ ← MTG([asrts(P)], x̄)

2 s← Ctree(ψ)
3 xs← vars(e) ∪ vars(π) \ vars(P)
4 s⃗xs ← [ŝi := symvar() | ŝi ∈ xs]
5 return fn f(x̄) { s; s⃗xs; assume π; return e }

45

46

5
Specification-Driven Summary

Synthesis

Contents

5.1 Limitations of Function Synthesis . 49

5.2 Under-Approximating Compilation . 50

5.3 Over-Approximating Compilation . 53

47

48

We introduce modifications to the code generation process in order to synthesise summaries instead

of functions. In particular, we discuss the limitations of function synthesis (§5.1) and detail the generation

process for under-approximating (§5.2) and over-approximating (§5.3) summaries.

5.1 Limitations of Function Synthesis

In §4.6, we described a procedure to compile function specifications to executable code. In practice,

however, this procedure has a number of limitations. Consider, for instance, the specification shown

below for the LIBC function strlen, which models the length of a C-style string pointed to by s:

{ str(s; ν) } fn strlen(s) { ret := ν } (5.1)

The pre-condition states that s points to a string of length ν (through a predicate str), while the post-

condition simply states that the return value is the length of the string. The str predicate is shown below:

pred str(s; ν) {
s 7→ c ∗ c = ‘\0’ ∗ ν := 0;

s 7→ c ∗ c ̸= ‘\0’ ∗ ν := κ+ 1 ∗ str(s+ 1, κ)

}

(5.2)

The predicate models two cases: (i) s points to the null character (i.e., s is the empty string), in which

case the length is 0, or (ii) s points to a non-null character (i.e., s is a non-empty string), in which case

the length of s is obtained by adding 1 to the length of the string starting at s + 1. Thus, compiling the

specification, we obtain the following functions:

fn strlen(s) {
ν := foldstr(s);

return ν

}

(5.3)

fn foldstr(s) {
c := ∗ s;
if (c = ‘\0’) { ν := 0 }
else {

κ := foldstr(s+ 1);

ν := κ+ 1

};
return ν

}

(5.4)

Intuitively, the synthesised strlen function receives as argument a string s and returns its respective

length. This is in line with expectations, since we are computing the function’s return value from the set

of formal parameters, as we emphasised in §4.

49

Let us now look at what happens in practice when invoking the synthesised function. We consider

two cases: the concrete case and the symbolic case. The first is rather simple; take, for example,

the concrete string [‘f ’, ‘o’, ‘o’, ‘\0’]. Clearly, passing it to strlen would return 3, which is indeed the cor-

rect length. Consider, however, the case of symbolic strings; what happens, for instance, if we give it

[ĉ1, ĉ2, ‘\0’] as argument? Does strlen return a length of 0, 1 or 2? In fact, a symbolic execution engine

will branch once it hits the statement if (c = ‘\0’) if c is a symbolic value, meaning that both ĉ1 and ĉ2

cause the engine to branch. Thus, strlen models all possible lengths (i.e., 0, 1 and 2), but does so by

branching, which means that the issue of path explosion is still present in the synthesised functions.

Our goal is to synthesise summaries, which we expect to address the path explosion problem. To

that end, we need to introduce a number of changes to the code generation process. In particular, these

changes allow us to compile function specifications to under-approximating (§5.2) or over-approximating

(§5.3) summaries.

5.2 Under-Approximating Compilation

An under-approximating (UX) summary, as we have already seen, models a subset of the paths gener-

ated by the symbolic execution of the concrete function. Thus, a possible approach to synthesise such

summaries is to drop feasible paths each time the symbolic execution might branch. This is indeed the

approach we take, as we allow developers to annotate their specifications with a default path that will

never be dropped. The responsibility of choosing this default path lies with the developer, and the choice

can be made according to their specific needs. Then, in the synthesised code, if statements are gen-

erated in such a way that they avoid branching; that is to say, when branching is possible, the symbolic

execution engine follows the default branch and discards non-default ones.

To illustrate our methodology, let us again consider the str predicate. When analysing a symbolic

character within a string, the most common case is for it to be a non-null character. In line with this

reasoning, the developer may choose to specify the recursive case of the predicate as the default path.

In the following, we identify the default case by underlining it, as shown below:

pred str(s; ν) {
s 7→ c ∗ c = ‘\0’ ∗ ν := 0;

s 7→ c ∗ c ̸= ‘\0’ ∗ ν := κ+ 1 ∗ str(s+ 1, κ)

}

(5.5)

50

Taking the default case information into account, we synthesise the foldstr function as follows:

fn foldstr(s) {
c := ∗ s;
if (isCertain(c = ‘\0’)) { ν := 0 }
else { assume c ̸= ‘\0’; κ := foldstr(s+ 1); ν := κ+ 1 };
return ν

}

(5.6)

where isCertain(π) is a special predicate that checks if a Boolean assertion π is implied by the current

path condition.

Notice that if we now feed the symbolic string [ĉ1, ĉ2, ‘\0’] to strlen, only the path where the length is

2 is modelled. Why? Because the symbolic execution engine cannot reason with certainty about ĉ1 and

ĉ2; thus, it assumes the default path (i.e., that they are non-null characters), and continues calling foldstr

recursively. Only in the case of the concrete null terminator does it follow the corresponding path, since

isCertain(‘\0’ = ‘\0’) is trivially true.

A natural question to ask at this point is whether the same applies to function specifications. If a

specification leads to branching, can we use a similar approach for summary synthesis? The answer

is yes, although in practice specifications do not allow branching, since we restrict ourselves to single

Hoare triples (see §4.5).

Luckily, most of our infrastructure for code synthesis can be reused for the generation of under-

approximating summaries. In particular, only the compilation function Ctree needs to be changed to take

default paths into account. To that end, we introduce under-approximating matching trees ζ ∈ Z, which

come annotated with their respective default path:

ζ ∈ Z ≜ ⊚• | ◁ p, ζ ▷ | ◁ π, ζ, ψ ▷l | ◁ π, ψ, ζ ▷r (5.7)

where: (i) the leaf node ⊚• and the single node ◁ p, ζ ▷ are similar in form and purpose to those of

regular matching trees; (ii) the left-default double node ◁π, ζ, ψ▷l denotes a double node where the

default path is the left branch; and (iii) the right-default double node ◁π, ψ, ζ ▷r denotes a double node

where the default path is the right branch. Notice that the non-default paths are just regular matching

trees. With this information in mind, we can derive an under-approximating matching tree for the str

predicate as follows:

◁ s 7→ c, ◁ c = ‘\0’, ⟨ν := 0, •⟩, ◁ str(s+ 1, κ), ◁ ν := κ+ 1, ⊚• ▷ ▷ ▷r ▷ (5.8)

Note that the double node that captures the test c = ‘\0’ is a right-default double node, expressing the

fact that if it cannot be proven that c is the null terminator, we assume that it is not.

51

Cuxtree(⊚•) ≜ skip

Cuxtree(◁ p, ζ ▷) ≜ Casrt(p); Cuxtree(ζ) Aux
tree(•) ≜ skip

Cuxtree(◁π, ζ, ψ▷l) ≜ if (isCertain(¬π)) {Aux
tree(ψ)} Aux

tree(⟨p, ψ⟩) ≜ Casrt(p); Aux
tree(ψ)

else {assume π; Cuxtree(ζ)} Aux
tree(⟨π, ψ1, ψ2⟩) ≜ if (isCertain(π)) {Aux

tree(ψ1)}
Cuxtree(◁π, ψ, ζ ▷r) ≜ if (isCertain(π)) {Aux

tree(ψ)} else {if (isCertain(¬π)) {Aux
tree(ψ2)}

else {assume ¬π; Cuxtree(ζ)} else {assume false}}

Figure 5.1: Compilation Functions: Cux
tree (left) and Aux

tree (right)

Having established a new format for under-approximating trees, we must now define a new compiler

that translates them into executable code. Figure 5.1 introduces the new compiler, modeled as a function

Cuxtree : Z → Stmt that maps under-approximating matching trees to the corresponding statements. The

compiler Cuxtree makes use of an auxiliary compilerAux
tree : Ψ→ Stmt that translates exact matching trees to

under-approximating code. As is the case in regular compilation, the synthesised code should compute

the output parameters of the matching tree from the set of input parameters, but it should also guide

execution towards the default path when it cannot reason about the symbolic parameters with absolute

certainty. Thus, the compiler Cuxtree has four cases:

• Leaf Nodes. The leaf node is simply compiled to the skip instruction.

• Single Nodes. A single node ◁ p, ζ ▷ is compiled by sequencing the compilation of p with the

compilation of ζ.

• Left-Default Double Nodes. A left-default double node ◁π, ζ, ψ▷l means that the left branch is

the default one. Consequently, we only follow the right branch if ¬π is certain; if it is not, we follow

the left and assume its constraints by beginning the branch with an assume π command.

• Right-Default Double Nodes. A right-default double node is compiled in an analogous way to the

left-default one.

Note that when compiling non-default branches, we use the auxiliary compiler instead of the main one.

The key distinction between the compilers lies in their treatment of conditionals. The auxiliary compiler

Aux
tree only allows a conditional branch to be taken if its guard is implied by the current path condition. In

contrast, the main compiler Cuxtree allows for the default branch to be taken even when it cannot prove its

guard. In essence, we exclusively employ the auxiliary compiler for non-default paths, for which one has

to prove their exact conditions in order to follow them. The auxiliary compiler Aux
tree has three cases:

• Leaf Nodes. The leaf node is simply compiled to the skip instruction.

• Single Nodes. A single node ⟨p, ψ⟩ is compiled by sequencing the compilation of p with the

compilation of ψ.

52

• Double Nodes. A double node ⟨π, ψ1, ψ2⟩ means that neither ψ1 nor ψ2 are the default path.

Consequently, we should only follow them if either π or ¬π is certain. If that is not the case, we

discard the current path by adding an assume false command.

5.3 Over-Approximating Compilation

An over-approximating (OX) summary models a superset of the paths generated by the symbolic exe-

cution of the concrete function. In contrast to the under-approximating case, one cannot discard paths

when synthesising over-approximating summaries, since they have to model all paths that the symbolic

execution of the concrete function would generate. In the case of matching trees, this means that we

cannot simply choose a default branch when compiling double nodes. Instead, we need to compute a set

of simple assertions shared by both branches, and use these to generate a single over-approximating

case. More concretely, a double node is compiled to an if-then-else conditional with three cases:

• The case where the guard is proven to hold.

• The case where the negation of the guard is proven to hold.

• The over-approximating case, where we create a fresh symbolic variable representing the output

parameter of the predicate and constrain it with the the simple assertions shared by both branches.

An important caveat of our methodology is that it does not automatically find implied shared as-

sertions. Thus, if the developer wants any such assertion to be taken into account by the synthesis

procedure, they should add them explicitly to the various branches of a predicate.

To illustrate our methodology, let us again look at the str predicate. Although no shared set of

simple assertions is explicit, it is relatively straightforward to see that one can augment both cases with

a redundant simple assertion ν ≥ 0, capturing the fact that the length of a string is always non-negative.

We can therefore rewrite the str predicate with this shared simple assertion highlighted, as shown below:

pred str(s; ν) {
s 7→ c ∗ c = ‘\0’ ∗ ν := 0 ∗ ν ≥ 0 ;

s 7→ c ∗ c ̸= ‘\0’ ∗ ν := κ+ 1 ∗ str(s+ 1, κ) ∗ ν ≥ 0

}

(5.9)

53

Coxtree(•, X) ≜ skip

Coxtree(⟨p, ψ⟩, X) ≜ Casrt(p); Coxtree(ψ, X ∪ outs(p))

Coxtree(⟨π, ψ1, ψ2⟩, X) ≜ if (isCertain(π)) {Coxtree(ψ1, X)}
else {if (isCertain(¬π)) {Coxtree(ψ2, X)}
else {OX-CODE(ψ1, ψ2, X)}}

Figure 5.2: Compilation Function: Cox
tree

Equipped with the knowledge of the shared assertion, we synthesise the foldstr function as follows:

fn foldstr(s) {
c := ∗ s;
if (isCertain(c = ‘\0’)) { ν := 0 }
else {

if (isCertain(c ̸= ‘\0’)) {κ := foldstr(s+ 1); ν := κ+ 1 }
else { ν := symvar(); assume ν ≥ 0 }

}
return ν

}

(5.10)

Note that, similarly to the under-approximating case, the synthesised strlen function does not actually

change, only the fold function.

If we now feed the symbolic string [ĉ1, ĉ2, ‘\0’] to strlen, the summary will output a fresh symbolic

variable, say v̂, that is assumed to be greater than or equal to 0, effectively reflecting the fact that it

models all lengths greater than or equal to 0. In contrast, if ĉ1 was a concrete character (for instance, in

the string [‘a’, ĉ2, ‘\0’]), we would only model lengths greater than or equal to 1.

In contrast to the under-approximating case, over-approximating compilation does not require changes

to the internal structure of matching trees. Thus, we simply need to redefine the compiler so that it can

translate regular matching trees to over-approximating code. Figure 5.2 introduces the new compiler,

modeled as a function Coxtree : Ψ × ℘(X) → Stmt that, given a set of known variables X, maps reg-

ular matching trees to the corresponding statements. In addition to computing the output parameters

of the matching tree from the set of input parameters, the synthesised code should also capture the

constraints of the over-approximating case when it cannot reason about the symbolic parameters with

absolute certainty. Thus, the compiler Coxtree has three cases:

• Leaf Nodes. The leaf node is simply compiled to the skip instruction.

• Single Nodes. A single node ⟨p, ψ⟩ is compiled by sequencing the compilation of p with the

compilation of ψ.

• Double Nodes. A double node ⟨π, ψ1, ψ2⟩means that the execution has three possible outcomes:

54

either π is certain, in which case the chosen branch is ψ1, ¬π is certain, in which case the cho-

sen branch is ψ2, or neither is certain, in which case we follow the over-approximating path, as

explained above.

Notice that the compiler makes use of a procedure OX-CODE to synthesise the over-approximating

code. This procedure should address two main questions: how do we find the set of shared simple

assertions, and how do we compile them once found? Algorithm 5.1 describes our implementation of

OX-CODE. The algorithm works as follows: first, we extract the matching plans coalesced by ψ1 and ψ2

with the help of the tp function from §4.5 (line 1). Then, we find the Boolean assertions that appear in all

matching plans (i.e., the set of simple assertions shared by ψ1 and ψ2) and create a new formula π with

their conjunction (line 2). We then determine the set xs containing the free logical variables that occur in

π (line 3); these will typically include the output parameter of the predicate. Lastly, we generate a fresh

symbolic variable for each of the free variables (line 4), appending a final assume command to add π to

the current path condition and returning the result (line 5).

Algorithm 5.1: OX-CODE compiles the set of simple assertions shared by the two branches of
a double node

Input: Two matching trees ψ1 and ψ2 and a set of known variables X
Output: The compilation of the set of simple assertions shared by ψ1 and ψ2

1 # »pp1,
»pp2 ← tp(ψ1), tp(ψ2)

2 π ←
∧
{ π′ | ∀p⃗ ∈ # »pp1 ∪ # »pp2. π

′∈ p⃗ }
3 xs← vars(π) \X
4 s⃗xs ← [ŝi := symvar() | ŝi ∈ xs]
5 return s⃗xs; assume π

55

56

6
Architecture and Implementation

57

58

Based on our methodology, we introduce SUMSYNTH, a tool that synthesises symbolic summaries

from declarative specifications. More concretely, SUMSYNTH receives as input an SL-style specification

for some target function as input and a flag indicating the synthesis mode (under-approximating or over-

approximating), and outputs the corresponding symbolic summary. Importantly, SUMSYNTH allows the

developer to synthesise summaries for a variety of languages by simply changing the code generation

module, as will later become clear. Even though in our implementation we only synthesise summaries

in C and Python, one could easily extend SUMSYNTH to other languages without much difficulty.

Let us now look at the inner workings of SUMSYNTH in more detail. Figure 6.1 gives an overview

of the high-level architecture of SUMSYNTH. There are 4 main modules in the pipeline: (1) the parser

module, (2) the matching engine, (3) the summary generator, and (4) the code generator. Below, we

describe each of these:

1. SL Parser Module The parser module simply parses a function specification received as input,

generating the corresponding abstract syntax tree (AST). Specifications are written in our custom

SL-style assertion language (which we formalised in §4.2).

2. Matching Engine The matching engine is responsible for deriving matching plans and trees for

the provided specifications, following the derivation procedures described in §4.4 and §4.5.

3. Summary Generator The summary generator module produces symbolic summaries in the in-

termediate language (IL) described in §4.6.1 and outputs them as an AST encoded as a JSON

file. The generation process either follows the methodology for generating under-approximating

summaries (§5.2) or the one for over-approximating summaries (§5.3). Notably, this module is

also capable of synthesising functions according to the methodology described in §4.6.

4. Code Generator The code generator module (not to be confused with the code generation pro-

cedure described in §4.6) is simply a special-purpose transpiler to convert summaries produced in

our IL to actual executable summaries that can then be given to a symbolic execution engine. In our

implementation, we opt to generate summaries in C and Python. The C summaries are compatible

with the tool-independent API developed by Ramos et al. [7], whereas the Python summaries are

compatible with angr [8]; however, the developer may choose to expand this module to generate

summaries for other languages.

How do these modules work in practice? We demonstrate the architecture via an example execution.

Consider the specification given in Listing 6.1 for the LIBC function atoi, which converts a string to an

integer. Notice that the specification is over-approximating, meaning that at the end we will generate an

over-approximating summary. Let us then examine the synthesis process:

1. SL Parser Module The specification for atoi is fed to SUMSYNTH and parsed by the SL parser

module. Notice that the specification follows the formalised grammar rather closely. There are,

59

Figure 6.1: SUMSYNTH architecture

however, three main differences: (i) all types are explicit, whereas in the formal grammar only

some operations are typed; (ii) assertions are not implicitly assumed to be existentially quantified;

instead, they have to be explicitly annotated as such; (iii) there is no distinction between regular

and directed equalities; there is a single equality operation (i.e., ==), and SUMSYNTH infers which

of the two applies in each case based on the current set of known variables.

2. Matching Engine After the parsing step, the information is then passed to the matching engine,

which is responsible for deriving valid matching trees for the specification and any predicate defi-

nitions that might exist. If we look at our running atoi example, for instance, we would derive the

following matching tree for the predicate str1:

⟨s 7→ c, ⟨c = ‘\0’, ⟨ν := 0, . . .⟩, ⟨str(s+ 1, κ), . . .⟩⟩⟩ (6.1)

Note that the derivation process depends on the desired summary type, i.e., if we were generating

an under-approximating summary, we would derive an under-approximating matching tree. Since

the specification for atoi is over-approximating, we derive a regular matching tree (see §5.3).
1We omit parts of the matching tree for readability.

60

1 fn atoi(s: ^char) := {

2 locals: (n: int32, i: int32, ret: int32)

3 pre: str(s; n)

4 post: ret == i <*> i <= 10 ** n <*> i >= -10 ** (n - 1)

5 }

6

7 pred str(s: ^char; n: int32) := {

8 s -> '\0' <*> n == 0 <*> n >= 0;

9 exists [c: char, k: int32] s -> c <*> c != '\0' <*>

10 n == k + 1 <*> str(s + 1; k) <*> n >= 0

11 }

Listing 6.1: An over-approximating specification for atoi

3. Summary Generator The step that follows is the actual summary synthesis procedure. As we

have previously mentioned, the purpose of the summary generator module is to synthesise sum-

maries in our IL, which is syntactically similar to the statement language we formalised in §4.6.1.

There are three different synthesis modes: function, under-approximating and over-approximating.

The first follows the procedure detailed in §4.6, and is not of particular interest to us. The other two

produce under- and over-approximating summaries according to the methodologies described in

§5.2 and §5.3 respectively. Since the specification for atoi is over-approximating, SUMSYNTH can

only synthesise an over-approximating summary (the converse is true for the under-approximating

case). If the specification was exact, the developer would be able to specify a synthesis mode to

generate either an under- or an over-approximating summary. In the end, the generated summary

is encoded as an AST and passed on to the code generator module in a JSON file. Listing 6.2

shows an excerpt of the JSON encoding of the synthesised summary for atoi.

4. Code Generator In the final step, the JSON file produced by the summary generator is fed to a

special-purpose transpiler to convert summaries produced in our IL to executable summaries in our

target language. In our implementation, we offer the infrastructure to synthesise summaries both

in C and Python, leaving to the developer the choice of possibly extending this to other languages.

Listing 6.3 shows an excerpt of the synthesised Python summary for atoi, which is compatible with

angr [8]. The corresponding C summary, omitted here for brevity, would follow a similar structure,

using the symbolic reflection primitives proposed by Ramos et al. [7] instead of the angr primitives.

Implementation. SUMSYNTH was written in Haskell (using stack2) and Python. The Haskell portion in-

cludes Modules (1)-(3) (i.e., up until the summary generation step), while the Python portion implements

Module (4). The total number of lines of code (LoC) is ∼2.4k (source code only), roughly split between

1.5k LoC in Haskell and 850 LoC in Python. Additionally, there are multiple unit and end-to-end tests

implemented across the various modules.

2https://docs.haskellstack.org/en/stable/

61

https://docs.haskellstack.org/en/stable/

11 ...

12 "name": "atoi",

13 "params": [{

14 "node": "decl",

15 "name": "s",

16 "type": {

17 "node": "ptr",

18 "type": {

19 "node": "type",

20 "name": "s",

21 "type": {

22 "node": "typeid",

23 "type": "int8"

24 }

25 }

26 }

27 }]

28 ...

Listing 6.2: JSON encoding of the synthesised
summary for atoi (excerpt)

1 class atoi(Summary):

2 def run(self, s):

3 return self.atoi(s)

4

5 def atoi(self, s):

6 var1 = self.fold_str(s)

7 aux1 = self.sym_var(

8 self.arch.sizeof['int']

9)

10

11 ret = aux1

12 self.assume(self.And(

13 self.Le(aux1, (10 ** var1)),

14 self.Ge(aux1, -(10 ** (var1 - 1)))

15))

16

17 return ret

18 ...

Listing 6.3: Synthesised Python summary for atoi

(excerpt)

A major challenge during the development of SUMSYNTH was choosing the right solution to address

the challenges arising from our intended architecture. Thus, we highlight some of the technologies we

used and choices we made while developing SUMSYNTH:

• We use Parsec3 [43] to handle the parsing of specifications. Parsec is a parser combinator library

for Haskell that is both efficient and relatively easy to use, besides providing all the functionality we

need for our tool.

• We use MTL4 [44,45] to tackle stateful computations, I/O actions and error handling. In particular,

we make heavy use of the state monad [46] in the matching engine and summary generator

modules, and of the I/O and error monads across the whole Haskell pipeline.

• We use HSpec5, a popular testing framework, to test the Haskell modules.

• We use pycparser6, a C parser written in Python, to parse ASTs from our IL to C ASTs. Besides

allowing us to compile C summaries almost directly, the C ASTs generated by pycparser remove

any ambiguities that might exist in the original AST. This means that, even when compiling Python

code, it is useful to generate a C AST as an intermediate step before generating the Python AST.

3https://hackage.haskell.org/package/parsec
4https://hackage.haskell.org/package/mtl
5https://hspec.github.io/
6https://github.com/eliben/pycparser

62

https://hackage.haskell.org/package/parsec
https://hackage.haskell.org/package/mtl
https://hspec.github.io/
https://github.com/eliben/pycparser

7
Evaluation

Contents

7.1 EQ1: Synthesis Correctness . 65

7.2 EQ2: Summary Complexity . 67

7.3 EQ3: Summary Performance . 71

63

64

This chapter answers the following evaluation questions:

EQ1: Is SUMSYNTH capable of synthesising under- and over-approximating summaries that are

correct by construction?

EQ2: How complex are generated summaries in comparison to handcrafted summaries?

EQ3: How does the performance of generated summaries compare against that of handcrafted sum-

maries (both tool-independent and tool-specific)?

7.1 EQ1: Synthesis Correctness

In order to evaluate the correctness of the synthesis process, we use SUMSYNTH to generate 63 sym-

bolic summaries covering 34 LIBC functions from 4 header files (string.h, stdlib.h, stdio.h and ctype.h).

As we mentioned in Chapter 6, we can choose between two synthesis modes: under-approximating and

over-approximating. For most of the functions, we generate both types of summaries. In cases where

that is not possible (i.e., when we can only write either an under- or over-approximating specification),

we generate a single type. Thus, from the 63 synthesised summaries, 29 follow the under-approximating

synthesis procedure and 34 follow the over-approximating one.

Table 7.1 shows, for each function, the type of the respective specification and of the generated

summary(ies). For each summarized function, we place a checkmark in the Spec Under/Over/Exact

column if the developed specification for that function matches the respective specification type. Anal-

ogously, we place a checkmark in the Summary Under/Over column if the generated summary is of

the respective type. Rows string.h, stdlib.h, stdio.h and ctype.h show the aggregate number of speci-

fications/summaries pertaining to each of the four libraries. The correctness properties of synthesised

summaries were all double-checked with the help of SUMBOUNDVERIFY [7]. SUMBOUNDVERIFY is a

summary validation tool that checks the correctness of summaries by comparing the paths modelled by

the summary with the paths generated by the symbolic execution of the concrete function.

We checked the correctness of all summaries except for those modelling I/O functions, which we

highlighted with an asterisk (∗). These cannot be verified against their reference implementations be-

cause they interact with the runtime environment through system calls, meaning that their verification

extends beyond the boundaries of the language and, consequently, of the symbolic execution engine.

Nonetheless, we include them in our experiments, since we choose to ignore environment side effects.

It is notoriously challenging to write exact specifications for some functions (notably, in the case of

number-parsing). We choose to over-approximate such functions, meaning that we can only synthe-

sise the corresponding over-approximating summaries. The remaining functions are relatively straight-

forward to define through exact specifications. This implies that we can synthesise both under- and

over-approximating summaries modelling these functions, as our results show.

65

Table 7.1: Correctness properties of the synthesised summaries

Function
Spec
Under

Spec
Over

Spec
Exact

Summary
Under

Summary
Over

string.h – – 13 13 13

memchr – – ✓ ✓ ✓

memcmp – – ✓ ✓ ✓

strcasecmp – – ✓ ✓ ✓

strcasencmp – – ✓ ✓ ✓

strchr – – ✓ ✓ ✓

strcmp – – ✓ ✓ ✓

strcspn – – ✓ ✓ ✓

strlen – – ✓ ✓ ✓

strncmp – – ✓ ✓ ✓

strpbrk – – ✓ ✓ ✓

strrchr – – ✓ ✓ ✓

strspn – – ✓ ✓ ✓

strstr – – ✓ ✓ ✓

stdlib.h – 4 1 1 5

abs – – ✓ ✓ ✓

atof – ✓ – – ✓

atoi – ✓ – – ✓

atol – ✓ – – ✓

rand – ✓ – – ✓

stdio.h* – 1 2 2 3

getchar – ✓ – – ✓

putchar – – ✓ ✓ ✓

puts – – ✓ ✓ ✓

ctype.h – – 13 13 13

isalnum – – ✓ ✓ ✓

isalpha – – ✓ ✓ ✓

iscntrl – – ✓ ✓ ✓

isdigit – – ✓ ✓ ✓

isgraph – – ✓ ✓ ✓

islower – – ✓ ✓ ✓

isprint – – ✓ ✓ ✓

ispunct – – ✓ ✓ ✓

isspace – – ✓ ✓ ✓

isupper – – ✓ ✓ ✓

isxdigit – – ✓ ✓ ✓

tolower – – ✓ ✓ ✓

toupper – – ✓ ✓ ✓

66

One of the key strengths of our methodology lies in how easy it is to write specifications and synthe-

sise the corresponding summaries. Unlike their handcrafted counterparts, our summaries are correct by

construction. As a result, we found them to be bug-free, which would be inconceivable if we wrote the

summaries manually. Furthermore, our approach allowed us to swiftly develop summaries for 34 LIBC

functions. Given the time, we would be able to synthesise an even greater number of summaries.

7.2 EQ2: Summary Complexity

We compare the complexity of summaries synthesised with SUMSYNTH against that of handcrafted

summaries. In particular, we discuss whether there are any major differences between the two and what

the developer gains from using our tool. In order to measure how complex a summary is, we focus on two

metrics: the number of lines of code (LoC) and the number of calls to the API of the corresponding back

end (NAPI). To this end, we first discuss some of the challenges that arise when measuring complexity

across different tools (§7.2.1), and then present our results (§7.2.2).

7.2.1 Challenges

The main challenge of measuring complexity across different back ends is the lack of uniformity between

the various implementations. We subdivide this into three simpler challenges:

C1: How can we compare the complexity of summaries that satisfy different properties, and thus

inherently possess distinct characteristics? We find that, on average, unsound summaries tend to be

the shortest, exact summaries tend to be the longest, and under-approximating summaries tend to be

shorter than over-approximating summaries. How can we make a fair comparison between different

back ends using summaries satisfying different properties with varying degrees of correctness?

Solution. Our synthesis tool allows the developer to choose between generating an under- or over-

approximating summary, so we measure their respective complexity separately. On the other hand,

both the tool-independent API developed by Ramos et al. [7] and angr [8] lack uniformity: the tool-

independent API often offers multiple summaries per function with varying degrees of correctness,

while angr offers a single (usually exact) summary per function. To deal with this issue, we try to

choose the summary that most closely resembles the synthesised summaries whenever possible.

C2: How are summaries linked to the symbolic execution engine? How does that affect their com-

plexity? Consider, for instance, the atoi function. The corresponding summary tends to consistently

have around 30-40 LoC, except in the case of the handcrafted angr summary, which has 224. This is

because the latter is part of the strtol family of summaries, meaning that a lot of its code is shared

with other summaries and not actually used in the particular atoi case.

67

Solution. We find that, in general, the variation in complexity due to linking differences is negligible.

When it is not, as was the case with atoi, we explicitly highlight the function.

C3: How do we define the concept of an API call? In particular, how can we ensure that this definition

is fair across both back ends, taking into account the fact that different tools use different symbolic

reflection primitives?

Solution. We choose a definition that is consistent with our synthesis procedure, and at the same

time fair to both back ends. Thus, an API call is defined as any call to the symbolic execution engine

except those whose purpose is to build a constraint (e.g. equal-to, greater-than, ITE, etc.) or create

a constant value (as is the case with angr ’s BVV).

7.2.2 Results

In order to evaluate the complexity of synthesised summaries, we focus on the same set of functions as

in §7.1. Table 7.2 shows, for each function, the complexity of the respective tool-independent summaries.

Analogously, Table 7.3 shows the complexity of the angr summaries. For each function, the Spec column

refers to the corresponding specification, the Manual column to the handcrafted summaries, and the

Gen-Under and Gen-Over columns to the under- and over-approximating summaries synthesised with

SUMSYNTH. The Type column under Manual refers to the correctness of the corresponding summary:

UX for under-approximating, OX for over-approximating, X for exact and U for unsound. Rows string.h,

stdlib.h, stdio.h and ctype.h show the median number of LoC/API calls for each of the four libraries. Note

that some of these values might be misleading, since the number of implemented summaries varies

considerably between handcrafted and synthesised summaries. Additionally, functions with an asterisk

(∗) in front indicate considerable variations in complexity resulting from differences in linking between

both back ends (C2, §7.2.1).

Results show that synthesised summaries are, on average, less complex than their handcrafted

counterparts. In particular, we see that under-approximating summaries tend to be the simplest, followed

by over-approximating and then handcrafted ones. One might speculate that this is due to two factors.

The first is that many of the handcrafted summaries are exact, which tend to be more complex than both

under- and over-approximating summaries. The second, which is more interesting to our analysis, is that

these summaries were written manually, without adhering to any specific structure and mostly through

trial and error. Furthermore, we should also consider the fact that even the complexity of synthesised

summaries is overstating the difficulty of developing them. In fact, one needs only to write a specification

for the target function, as the actual summary generation process is handled by SUMSYNTH. As our

results show, this is a relatively straightforward task; the number of LoC in a specification tends to be

only a fraction of the length of the corresponding summaries.

68

Table 7.2: Complexity of the synthesised summaries (C)

Spec Manual Gen-Under Gen-Over
Function

LoC LoC NAPI Type LoC NAPI LoC NAPI

string.h 14 38 12 – 47 6 71 12

memchr 10 38 12 UX 30 4 49 11
memcmp 10 34 6 U 31 4 45 6
strcasecmp 14 – – – 47 6 71 12
strcasencmp 15 – – – 56 8 87 15
strchr 10 73 16 X 30 4 49 11
strcmp 10 50 14 U 31 4 45 6
strcspn 15 – – – 56 8 89 17
strlen 9 23 4 X 22 2 32 6
strncmp 11 91 18 U 40 6 61 9
strpbrk 15 – – – 55 8 88 17
strrchr 17 38 6 X 56 8 92 20
strspn 15 – – – 56 8 89 17
strstr 16 – – – 65 10 105 20

stdlib.h 9 41 6 – 14 2 34 8

abs 9 – – – 14 2 30 6
atof 10 – – – – – 52 13
atoi 9 38 6 OX – – 34 8
atol 9 44 6 OX – – 34 8
rand 5 – – – – – 7 2

stdio.h 5 5 1 – 13.5 1 6 1

getchar 5 4 1 OX – – 6 1
putchar 5 5 1 X 5 0 5 0
puts 9 21 4 UX 22 2 32 6

ctype.h 9 25 3 – 20 2 27 3

isalnum 17 – – – 50 6 71 9
isalpha 9 – – – 20 2 27 3
iscntrl 9 – – – 20 2 27 3
isdigit 9 – – – 20 2 27 3
isgraph 13 – – – 35 4 49 6
islower 9 – – – 20 2 27 3
isprint 9 – – – 20 2 27 3
ispunct 29 – – – 95 12 137 18
isspace 9 20 3 X 20 2 27 3
isupper 9 – – – 20 2 27 3
isxdigit 13 – – – 35 4 49 6
tolower 9 25 3 X 20 2 30 6
toupper 9 25 3 X 20 2 30 6

69

Table 7.3: Complexity of the synthesised summaries (Python)

Spec Manual Gen-Under Gen-Over
Function

LoC LoC NAPI Type LoC NAPI LoC NAPI

string.h 14 164 33 – 37 6 51 12

memchr 10 – – – 25 4 38 11
memcmp 10 54 12 X 26 4 34 6
strcasecmp 14 – – – 37 6 51 12
strcasencmp 15 – – – 42 8 61 15
strchr* 10 106 25 X 25 4 38 11
strcmp* 10 317 58 U 26 4 34 6
strcspn 15 – – – 42 8 63 17
strlen 9 77 15 X 21 2 27 6
strncmp* 11 222 41 U 31 6 44 9
strpbrk 15 – – – 41 8 62 17
strrchr 17 – – – 42 8 64 20
strspn 15 – – – 42 8 63 17
strstr* 16 368 68 U 47 10 73 20

stdlib.h 9 224 29 – 14 2 29 8

abs 9 – – – 14 2 25 6
atof 10 – – – – – 41 13
atoi* 9 224 29 U – – 29 8
atol* 9 224 29 U – – 29 8
rand 5 – – – – – 11 2

stdio.h 5 21 2 – 15 1 10 1

getchar 5 21 2 OX – – 10 1
putchar 5 8 1 X 9 0 9 0
puts* 9 89 16 X 21 2 27 6

ctype.h 9 4 0 – 19 2 22 3

isalnum 17 – – – 39 6 48 9
isalpha 9 – – – 19 2 22 3
iscntrl 9 – – – 19 2 22 3
isdigit 9 – – – 19 2 22 3
isgraph 13 – – – 29 4 35 6
islower 9 – – – 19 2 22 3
isprint 9 – – – 19 2 22 3
ispunct 29 – – – 69 12 87 18
isspace 9 – – – 19 2 22 3
isupper 9 – – – 19 2 22 3
isxdigit 13 – – – 29 4 35 6
tolower 9 4 0 X 19 2 25 6
toupper 9 4 0 X 19 2 25 6

70

Finally, we observe that there is a considerable number of functions for which there are neither tool-

independent nor angr summaries. This happens even in popular functions such as atof and strpbrk,

mostly due to a combination of implementation overhead and being deemed unimportant. With the help

of SUMSYNTH, however, it is much easier to write summaries, meaning that developers need not neglect

these functions any longer.

7.3 EQ3: Summary Performance

We compare the performance of summaries synthesised with SUMSYNTH against that of handcrafted

summaries and measure the performance gains. In order to carry out this analysis, we use the symbolic

test suite developed by Ramos et al. [7], which makes heavy use of LIBC functions, as opposed to other

popular test suites [47, 48]. We give further details about the experimental setup in §7.3.1; then, we

present our results in §7.3.2.

7.3.1 Experimental Setup

As the test bed for our experiments, we used angr [8] extended with support for synthesised summaries

(both tool-independent and native). All tests were run on a Ubuntu machine (18.04.5 LTS) with an Intel

Xeon E5–2620 CPU and 32GB of RAM. Each test was given 16GB of RAM, and had a maximum timeout

of 30 minutes (1800 seconds).

Test Suites. To compare the performance of of summaries synthesised with SUMSYNTH against that of

handcrafted summaries, we use a symbolic test suite developed by Ramos et al. [7]. The test suite is

based on two open-source C libraries, both of which make heavy use of LIBC functions: (i) the HashMap1

library, which provides an implementation of a standard hash table, and (ii) the Dynamic Strings2 library,

which augments the LIBC string handling functionality by adding support for heap-allocated strings. More

concretely, there are actually two symbolic test suites, one for each library. The test suite for HashMap

comprises 10 symbolic tests, while the test suite for Dynamic Strings comprises 12. Furthermore, the

symbolic test suites were designed so as to cover all the functions exposed by the two libraries that

interact with LIBC functions.

7.3.2 Results

We ran both test suites in angr using: (i) the C reference implementation of each function (Concrete);

(ii) the handcrafted tool-independent summaries (C-Summaries); (iii) the handcrafted angr summaries

1https://gist.github.com/Richard-W/9568649
2https://github.com/antirez/sds

71

https://gist.github.com/Richard-W/9568649
https://github.com/antirez/sds

(Py-Summaries); (iv) the synthesised tool-independent summaries (C-Gen-Under and C-Gen-Over);

and (v) the synthesised angr summaries (Py-Gen-Under and Py-Gen-Over). The reference imple-

mentations were obtained from Verifiable C3, glibc4 and libiberty5, while the handcrafted C summaries

were obtained from the tool-independent API developed by Ramos et al. [7] and the Python summaries

from angr [8].

We present the summarised results in Table 7.4. We show for each test suite run: (i) the number of

tests that failed because the engine ran out of memory (Mem. Out); (ii) the number of tests that failed

because they exceeded the time limit (Timeout); (iii) the number of tests that executed successfully

(Success); (iv) the average number of explored paths per test (Avg. NPaths); (v) the average number of

calls to LIBC functions per test (Avg. NLIBC); (vi) the average number of API calls (Avg. NAPI); and (vii)

the average execution time per test (Avg. Time). Note that the average execution time for some of the

runs might be misleading, since tests that exceed the time limit are recorded with the fixed maximum

timeout of 1800 seconds. In contrast, the execution time for tests that fail due to lack of memory is

considered to be the time elapsed until failure.

Table 7.4: Performance of the synthesised summaries

Mem. Out
×

Timeout
×

Success
✓

Avg.
NPaths

Avg.
NLIBC

Avg.
NAPI

Avg.
Time (s)

Hash
Map

Concrete 7 0 3 2.2k 6.4k 3.7k 1056.58
C-Summaries 0 0 10 80 419 7.7k 201.66
Py-Summaries 0 0 10 72 390 222 74.81

C-Gen-Under 0 0 10 1 54 755 19.54
C-Gen-Over 0 0 10 111 464 1.7k 86.07
Py-Gen-Under 0 0 10 1 54 755 9.79
Py-Gen-Over 0 0 10 109 454 1.7k 61.83

Dynamic
Strings

Concrete 6 2 4 2.3k 3.8k 4.3k 744.25
C-Summaries 1 0 11 424 483 4.0k 276.64
Py-Summaries 1 0 11 454 361 97 132.184

C-Gen-Under 1 0 11 340 288 1.5k 114.99
C-Gen-Over 5 1 6 512 946 5.5k 636.33
Py-Gen-Under 1 0 11 374 291 1.7k 101.71
Py-Gen-Over 4 1 7 714 1.3k 25.5k 586.06

Unsurprisingly, results show that summaries, both handcrafted and automatically synthesised, easily

surpass the performance of the reference implementations. Perhaps more interesting, however, is the

comparison between the performance of handcrafted and synthesised summaries. In particular, we

3https://softwarefoundations.cis.upenn.edu/
4https://www.gnu.org/software/libc/
5https://gcc.gnu.org/onlinedocs/libiberty/

72

https://softwarefoundations.cis.upenn.edu/
https://www.gnu.org/software/libc/
https://gcc.gnu.org/onlinedocs/libiberty/

make two main observations. Firstly, we note that the automatically generated under-approximating

summaries tend to be the most performant of the bunch. Notably, only a single test in the Dynamic

Strings test suite, which also fails in all other cases, fails when using under-approximating summaries.

In contrast, the execution time in the tests that do not fail is, on average, 3 to 5 times lower than that

in the case of handcrafted summaries. This is to be expected, as such summaries drop some of the

paths generated by the symbolic execution of the concrete function. It follows that the execution time

should indeed be much lower than in other cases, since we model only a fraction of the paths we

would otherwise.

On the other hand, the over-approximating case is not as straightforward. In particular, we observe

that the use of automatically synthesised over-approximating summaries actually leads to an increase

in performance in the Hash Map test suite. In contrast, in the Dynamic Strings test suite, there is a

decrease in performance. In fact, the latter is to be expected, as over-approximating summaries have

the opposite problem of their under-approximating counterparts: they model a superset of the execution

paths generated by the symbolic execution of the concrete function, meaning that they might not drop

spurious paths. The fact that over-approximating summaries are actually faster in the Hash Map test

suite seems to indicate that the synthesis procedure is powerful enough for the performance of our

over-approximating summaries to surpass even that of exact handcrafted summaries, although further

research would have to be conducted to confirm this hypothesis.

Both these results highlight an important point: we cannot make a fair comparison between hand-

crafted and synthesised summaries if their correctness properties differ. Consider, for instance, the com-

mon case where the handcrafted summary is exact. If we compare it against an under-approximating

summary, we compromise on the coverage guarantees. If we compare it against an over-approximating

summary, we compromise on performance. Thus, we cannot conduct a comprehensive study on the per-

formance of synthesised summaries unless we are able to automatically synthesise exact summaries.

We plan to address this limitation in future work.

73

74

8
Conclusion

Contents

8.1 Conclusions . 77

8.2 Future Work . 77

75

76

8.1 Conclusions

Symbolic summaries are a powerful way for modern symbolic execution engines to address the chal-

lenges of modelling interactions with the runtime environment and path explosion. Despite their potential,

however, summaries run into a key problem: they require significant developer effort to produce, since

interactions with the symbolic state must be implemented manually.

In this thesis, we proposed a new methodology to automate the creation of non-mutating symbolic

summaries by synthesising them from declarative specifications. Our approach allows developers to

automatically synthesise both under- and over-approximating summaries in a correct-by-construction

manner through our SL-based synthesis tool. The tool is compatible with a variety of symbolic execu-

tion engines, and was successfully used to generate a set of 29 under-approximating summaries and

34 over-approximating summaries, modelling 34 LIBC functions. In order to evaluate the viability of our

approach, we tested the performance and correctness of synthesised summaries against those of hand-

crafted summaries. Results clearly show that SUMSYNTH summaries surpass handcrafted summaries

both in terms of correctness and, in some benchmarks, performance.

8.2 Future Work

So far, our work has focused on the synthesis of under- and over-approximating symbolic summaries.

This leaves an obvious gap in the absence of a way to synthesise exact summaries. An exact summary,

as we have mentioned previously, models the same set of paths generated by the symbolic execution

of the concrete function. Thus, an approach to synthesise such summaries would be to use if-then-else

constraints instead of conditionals when modeling branching.

Another notable research path is the synthesis of mutating summaries (i.e., summaries with side

effects). As we have seen before, our tool only allows for the generation of non-mutating summaries, but

this also means that there is a good number of LIBC functions that we cannot model, since they affect

the heap. We intend to explore ways to solve this problem in the future.

Finally, we would like to formalise the soundness of the actual synthesis process. In particular, we in-

tend to mathematically prove that the code generation procedure is sound, thus ensuring the correctness

of the synthesised summaries.

77

78

Bibliography

[1] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—a formal system for testing and debugging pro-

grams by symbolic execution,” in Proceedings of the International Conference on Reliable Software.

New York, NY, USA: Association for Computing Machinery, 1975, p. 234–245.

[2] J. C. King, “A new approach to program testing,” in Proceedings of the International Conference on

Reliable Software. New York, NY, USA: Association for Computing Machinery, 1975, p. 228–233.

[3] ——, “Symbolic execution and program testing,” Communications of the ACM, vol. 19, no. 7, pp.

385–394, Jul. 1976.

[4] C. Barrett, D. Kroening, and T. Melham, Problem solving for the 21st century: Efficient solver for

satisfiability modulo theories, ser. Knowledge Transfer Report, Technical Report 3. London Mathe-

matical Society and Smith Institute for Industrial Mathematics and System Engineering, Jun. 2014.

[5] P. Godefroid, “Compositional dynamic test generation,” SIGPLAN Not., vol. 42, no. 1, p. 47–54, Jan.

2007.

[6] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic execution

techniques,” ACM Comput. Surv., vol. 51, no. 3, May 2018.

[7] F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos, “Toward tool-independent

summaries for symbolic execution,” in 37th European Conference on Object-Oriented Programming

(ECOOP 2023), ser. Leibniz International Proceedings in Informatics (LIPIcs), K. Ali and G. Sal-

vaneschi, Eds., vol. 263. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2023, pp. 24:1–24:29.

[8] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng,

C. Hauser, C. Kruegel, and G. Vigna, “SOK: (State of) The art of war: Offensive techniques in

binary analysis,” in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 138–157.

79

[9] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M.-L. Potet, and J.-Y. Marion, “Binsec/SE: A

dynamic symbolic execution toolkit for binary-level analysis,” in 2016 IEEE 23rd International Con-

ference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 653–656.

[10] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and

A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart

contracts,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE), 2019, pp. 1186–1189.

[11] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about programs that alter data

structures,” in Proceedings of the 15th International Workshop on Computer Science Logic, ser.

CSL ’01. Berlin, Heidelberg: Springer-Verlag, 2001, p. 1–19.

[12] J. Reynolds, “Separation logic: a logic for shared mutable data structures,” in Proceedings 17th

Annual IEEE Symposium on Logic in Computer Science, 2002, pp. 55–74.

[13] C. Calcagno and D. Distefano, “Infer: An automatic program verifier for memory safety of C pro-

grams,” in NASA Formal Methods, M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 459–465.

[14] N. Polikarpova and I. Sergey, “Structuring the synthesis of heap-manipulating programs,” Proc.

ACM Program. Lang., vol. 3, no. POPL, Jan. 2019.

[15] L. Song and K. Kavi, “What can we gain by unfolding loops?” SIGPLAN Not., vol. 39, no. 2, p.

26–33, Feb. 2004.

[16] J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, and P. Gardner, “Symbolic execution for

JavaScript,” in Proceedings of the 20th International Symposium on Principles and Practice of

Declarative Programming, ser. PPDP ’18. New York, NY, USA: Association for Computing Ma-

chinery, 2018.

[17] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms for the Con-

struction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 337–340.

[18] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed,

A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar,

“CVC5: A versatile and industrial-strength SMT solver,” in Tools and Algorithms for the Construction

and Analysis of Systems, D. Fisman and G. Rosu, Eds. Cham: Springer International Publishing,

2022, pp. 415–442.

80

[19] N. Sabino, “Automatic vulnerability detection: Using compressed execution traces to guide symbolic

execution,” Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa, 2019.

[20] E. Torlak and R. Bodik, “Growing solver-aided languages with Rosette,” in Proceedings of the 2013

ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming &

Software, ser. Onward! 2013. New York, NY, USA: Association for Computing Machinery, 2013,

p. 135–152.

[21] K. R. Apt, “Ten years of Hoare’s logic: A survey—part i,” ACM Trans. Program. Lang. Syst., vol. 3,

no. 4, p. 431–483, Oct. 1981.

[22] P. W. O’Hearn, “Incorrectness logic,” Proc. ACM Program. Lang., vol. 4, no. POPL, Dec. 2019.

[23] P. Maksimović, C. Cronjäger, J. Sutherland, A. Lööw, S.-E. Ayoun, and P. Gardner, “Exact separa-

tion logic,” 2022.

[24] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12, no. 10, p.

576–580, Oct. 1969.

[25] P. O’Hearn, “Separation logic,” Commun. ACM, vol. 62, no. 2, p. 86–95, Jan. 2019.

[26] D. Gopan and T. Reps, “Low-level library analysis and summarization,” in Computer Aided Verifica-

tion, W. Damm and H. Hermanns, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.

68–81.

[27] Y. Lin, T. Miller, and H. Søndergaard, “Compositional symbolic execution using fine-grained sum-

maries,” in 2015 24th Australasian Software Engineering Conference, 2015, pp. 213–222.

[28] J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner, “JaVerT 2.0: Compositional sym-

bolic execution for JavaScript,” Proc. ACM Program. Lang., vol. 3, no. POPL, Jan. 2019.

[29] R. Qiu, G. Yang, C. S. Pasareanu, and S. Khurshid, “Compositional symbolic execution with mem-

oized replay,” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,

vol. 1, 2015, pp. 632–642.

[30] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic generation of high-coverage

tests for complex systems programs,” in Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation, ser. OSDI’08. USA: USENIX Association, 2008, p. 209–224.

[31] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using symbolic evaluation to understand

behavior in configurable software systems,” in Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: Association

for Computing Machinery, 2010, p. 445–454.

81

[32] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform: Design, implementation, and

applications,” ACM Trans. Comput. Syst., vol. 30, no. 1, Feb. 2012.

[33] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven compositional symbolic execution,” in

Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Re-

hof, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 367–381.

[34] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali, “Compositional may-must program anal-

ysis: Unleashing the power of alternation,” in Proceedings of the 37th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser. POPL ’10. New York, NY,

USA: Association for Computing Machinery, 2010, p. 43–56.

[35] P. Godefroid and D. Luchaup, “Automatic partial loop summarization in dynamic test generation,”

in Proceedings of the 2011 International Symposium on Software Testing and Analysis, ser. ISSTA

’11. New York, NY, USA: Association for Computing Machinery, 2011, p. 23–33.

[36] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random testing of haskell pro-

grams,” in Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Pro-

gramming, ser. ICFP ’00. New York, NY, USA: Association for Computing Machinery, 2000, p.

268–279.

[37] E. L. Seidel, N. Vazou, and R. Jhala, “Type targeted testing,” in Programming Languages and

Systems, J. Vitek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 812–836.

[38] H. H. Nguyen, V. Kuncak, and W.-N. Chin, “Runtime checking for separation logic,” in Verification,

Model Checking, and Abstract Interpretation, F. Logozzo, D. A. Peled, and L. D. Zuck, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 203–217.

[39] P. Urzyczyn, M. H. S. Rensen, and M. H. Sorensen, Lectures on the Curry-Howard Isomorphism,

ser. Studies in Logic and the Foundations of Mathematics. Elsevier Science & Technology, Jul.

2006.

[40] S. Itzhaky, H. Peleg, N. Polikarpova, R. N. S. Rowe, and I. Sergey, “Cyclic program synthesis,”

in Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation, ser. PLDI 2021. New York, NY, USA: Association for Computing

Machinery, 2021, p. 944–959.

[41] Y. Watanabe, K. Gopinathan, G. Pı̂rlea, N. Polikarpova, and I. Sergey, “Certifying the synthesis of

heap-manipulating programs,” Proc. ACM Program. Lang., vol. 5, no. ICFP, aug 2021.

82

[42] S. Itzhaky, H. Peleg, N. Polikarpova, R. N. S. Rowe, and I. Sergey, “Deductive synthesis of programs

with pointers: Techniques, challenges, opportunities,” in Computer Aided Verification, A. Silva and

K. R. M. Leino, Eds. Cham: Springer International Publishing, 2021, pp. 110–134.

[43] D. Leijen and E. Meijer, “Parsec: A practical parser library,” Electronic Notes in Theoretical Com-

puter Science, vol. 41, no. 1, pp. 1–20, 2001.

[44] P. Wadler, “Monads for functional programming,” in Advanced Functional Programming: First Inter-

national Spring School on Advanced Functional Programming Techniques Båstad, Sweden, May

24–30, 1995 Tutorial Text 1. Springer, 1995, pp. 24–52.

[45] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular interpreters,” in Proceedings

of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser.

POPL ’95. New York, NY, USA: Association for Computing Machinery, 1995, p. 333–343.

[46] J. Launchbury and S. L. P. Jones, “State in Haskell,” LISP and Symbolic Computation, vol. 8, pp.

293–341, 1995.

[47] D. Beyer, “Competition on software verification and witness validation: SV-COMP 2023,” in Tools

and Algorithms for the Construction and Analysis of Systems, S. Sankaranarayanan and N. Shary-

gina, Eds. Cham: Springer Nature Switzerland, 2023, pp. 495–522.

[48] ——, “Software testing: 5th comparative evaluation: Test-Comp 2023,” in Fundamental Approaches

to Software Engineering, L. Lambers and S. Uchitel, Eds. Cham: Springer Nature Switzerland,

2023, pp. 309–323.

83

84

85

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	2 Background
	2.1 Symbolic Execution
	2.1.1 Pure Symbolic Execution
	2.1.2 Symbolic Execution with Summaries

	2.2 Separation Logic
	2.2.1 Foundations: Hoare Logic
	2.2.2 The Separating Conjunction
	2.2.3 Specifications

	3 Related Work
	3.1 Summaries in Symbolic Execution
	3.1.1 Operational Summaries
	3.1.2 First-Order Summaries
	3.1.3 Structured Summaries

	3.2 SL-Based Synthesis
	3.2.1 Test Synthesis
	3.2.2 Program Synthesis
	3.2.3 Wrapper Synthesis
	3.2.4 Closing Remarks

	4 Specification-Driven Function Synthesis
	4.1 Overview
	4.2 Syntax
	4.3 Input/Output Parameters
	4.4 Matching Plans
	4.5 Matching Trees
	4.6 Code Generation
	4.6.1 Syntax
	4.6.2 Compilation

	5 Specification-Driven Summary Synthesis
	5.1 Limitations of Function Synthesis
	5.2 Under-Approximating Compilation
	5.3 Over-Approximating Compilation

	6 Architecture and Implementation
	7 Evaluation
	7.1 EQ1: Synthesis Correctness
	7.2 EQ2: Summary Complexity
	7.2.1 Challenges
	7.2.2 Results

	7.3 EQ3: Summary Performance
	7.3.1 Experimental Setup
	7.3.2 Results

	8 Conclusion
	8.1 Conclusions
	8.2 Future Work

	Bibliography

